
 The µCL Language Specification

Table of Contents
1 Introduction..1

2 Lexical Considerations..2
2.1 Character Sets and Indentation..2
2.2 Symbols, Constants, and Punctuation..4

2.2.1 Symbols..4
2.2.2 Constants..5
2.2.3 Punctuation...7

2.3 Comments..8
2.4 Continuation Lines...8

3 Types...10
3.1 Bit...10
3.2 Unsigned Integer..10
3.3 Signed Integer..11
3.4 Floating Point...11
3.5 String..11
3.6 Array..12

4 Declarations..13
4.1 bind Declaration...13

4.1.1 Simple bind Declaration...13
4.1.2 Array bind Declaration...14
4.1.3 Bit bind Declaration...14

4.2 code_bank Declaration...15
4.3 configure Declaration...16
4.4 constant Declaration...16
4.5 data_bank Declaration...17
4.6 debug Declaration..17
4.7 icd2 Declaration...17
4.8 icd2_configure Declaration..18
4.9 global Declaration..18

4.9.1 Simple global Declaration..18
4.9.2 Array global Declaration..19

4.10 library Declaration...20
4.11 library_bank Declaration...21
4.12 origin Declaration..21
4.13 package Declaration...22

4.13.1 pin Declaration...22
4.13.2 package Example..23

4.14 processor Declaration...23
4.14.1 code_bank Declaration...24
4.14.2 configure_address Declaration...24
4.14.3 configure_fill Declaration..24
4.14.4 configure_option Declaration...25
4.14.5 data_bank Declaration..25
4.14.6 global_region Declaration..25
4.14.7 icd2_global_region Declaration...26

 The µCL Language Specification

i

Table of Contents
4 Declarations

4.14.8 icd2_shared_region Declaration...26
4.14.9 interrupts_possible Declaration..26
4.14.10 osccal_at_address Declaration...27
4.14.11 osccal_in_w Declaration..27
4.14.12 osccal_register_symbol Declaration...27
4.14.13 packages Declaration..27
4.14.14 pin Declaration...28
4.14.15 shared_region Declaration..29
4.14.16 processor Example...29

4.15 register Declaration..31
4.16 register_array Declaration..31
4.17 string Declaration...32
4.18 ucl Declaration...32

5 procedure Declaration...34
5.1 argument Declaration...34
5.2 arguments_none Declaration...35
5.3 exact_delay Declartion...35
5.4 local Declaration..35

5.4.1 Simple local Declaration..35
5.4.2 Array local Declaration..36

5.5 returns Statement...36
5.6 returns_nothing Declaration...36

6 Statements...37
6.1 assemble Statement..37
6.2 Assignment Statement...39

6.2.1 Simple Assignment Statement..39
6.2.2 Multiple Assignment Statement...39

6.3 call Statement...40
6.4 delay Statement..41
6.5 delay_set Statement...41
6.6 do_nothing Statement..42
6.7 if Statement..42
6.8 loop_exactly Statement..43
6.9 loop_forever Statement..43
6.10 return Statement...43
6.11 switch Statement..44
6.12 watch_dog_reset Statement...45
6.13 while Statement..45

7 Expressions...46
7.1 Differences from C Expressions..46
7.2 What is Precedence?..46
7.3 Assignment Operator (:=)..47
7.4 Comma Operator (,)...47
7.5 Conditional OR (||)...48

 The µCL Language Specification

ii

Table of Contents
7 Expressions

7.6 Conditional AND (&&)...48
7.7 Relational Operators and Bit Selection (<, =, >, <=, !=, >=, @)...49
7.8 Addition and Subtraction (+, -)..50
7.9 Multiplication, Division, and Modulo (*, /, and %)..50
7.10 Bitwise OR (|)..51
7.11 Bitwise AND (&)...52
7.12 Bitwise XOR (^)..52
7.13 Shift Operators (>>, <<)..53
7.14 Unary Operators (-, !, ~)..53
7.15 Array Operator (...[...])...54
7.16 Dot Operator (L.size)...54
7.17 Procedure Invocation (P(...))..54
7.18 Debugger Support..55

 The µCL Language Specification

iii

1 Introduction
µCL stand for MicroController Language. It has the following basic goals:

Targeted for Microcontrollers
Microcontrollers are an interesting bread of system that differ pretty substantially from their more
general purpose cousins. In general, microcontrollers are tending towards a so called Harvard
architecture where the program code lives in non-volitile flash read only memory and the data lives in
volitile random access memory. In addition, microcontrollers tend to have individual pins that can be
programmed for specific uses.

Microcontroller Neutral
The language specification is not geared towards any specific microcontroller. While the first µCL
code generators are geared towards the popular PIC® microcontrollers from MicroChip®, other code
generators for microctroller families from other vendors.

Platform Neutral
The µCL compiler runs on multiple platforms -- Linux®, Windows®, etc.

Beginner Friendly
Every attempt has been made to make the µCL friendly to beginning users. In particular, µCL does
not use braces ({...}) to nest statements; instead it uses indentation. The reason for this is to elminate
mismatched brace errors, a particularly nasty error that frequently results in an error message that
points to a location that is quite far removed from the actual error.

This language specification tends to follow the same overall structure as other language specications; namely
it discusses lexical issues first, followed by global declarations, procedure declarations, statements, and
expressions.

1 Introduction 1

2 Lexical Considerations
The term "lexical" is a computer science term that roughly corresponds to the character, word, and
punctuation rules for a program.

2.1 Character Sets and Indentation

Early programs were done on punched cards using the Hollerith character codes. The unlamented punched
cards were eventually replaced with 7-bit ASCII (American Standard Code for Information Interchange.) µCL
programs uses an 8-bit character code called Latin-9 which has 7-bit ASCII embedded in its first half and
some additional character codes suitible for European languages in its second half. The official name for
Latin-9 is ISO-8859-15, where ISO stands for International Standards Organization, 8859 is the number
reserved for 8-bit character code standards, and 15 is the standard number used for Latin-9. What this means
to the average µCL user is that symbols and strings can contain characters with accents, tildes, and umlauts
and there are some additional non-letter symbols such as the Euro currency symbol ('€' = code 164 decimal)
are available for inclusion in string and character constants.

A µCL program is broken into a sequence of lines, where each line is terminated by the LF character
(Line-Feed = code 10 decimal.) There are many computer systems that insert an extra CR character
(Carriage-Return = code 13 decimal) before each LF character. In µCL, the CR character before each LF
character is silently ignored. The CR and CR-LF sequence is called the end of line. The average µCL user
does not need to worry about any of this, whenever you need to start a new line, just press the [Enter] key, and
the a new line will be started; the underlying editor will deal with the CR and LF stuff appropriately.

In general, each µCL declaration and statement occupies one line. Line comments start with a hash character
('#' = code 35 decimal) and continue to the end of line. A fragment of a µCL program is shown below:

 ucl 1.0 # Line 1
 # Line 2 (blank)
 # Copyright © 2004 by Gramlich # Line 3 (comment)
 # Line 4 (blank)
 library PIC16F876A # Line 5

Note that this µCL program fragment has the Latin-9 character for copyright ('©' = code 169 decimal.) on the
third line.

In addition to treating end of line as a statement and declaration termination, µCL uses indentation to specify
nested statements and declarations. The Python programming language has popularized this concept. Some
example code with indentation is shown below:

 # All procedure declarations start at indentation
 # level 0 (i.e. no preceeding white space.)

 procedure maximum
 # Indentation level 1. All procedure arguments
 # and statements start at this level.

 argument a byte
 argument b byte
 returns byte

 if a > b
 # Indentation level 2. All "then" clause

2 Lexical Considerations 2

 # statements occur at one indentation level
 # greater than parent "if" statement.

 return a

 # The end of "then" clause reverts to
 # previous indentation level.

 # Back to indentation level 1.

 return b

 # End of arguments and statements reverts to
 # previous indentation level:

 # Back to indentation level 0.
 # More declarations follow here with no indenation.

 global variable x
 global variable y

This example shows an µCL procedure for computing the maximum of two values. The initial declaration line
is not indented at all and specifies the procedure name -- maximum. All subsequent procedure declarations
(e.g. argument and returns) and procedure statements (e.g. if and return) must be indented by at
least one level. The if statement starts at indentation level 1 and has its "then" clause at indentation level 2.
At the end of the "then" clause, indentation returns level 1. Similarly, the end of the procedure is indicated by
a return to indentation level 0.

The details for figuring out indentation are based on the column number for the first printing character (i.e. not
a space or tab) on a line. If a line contains no printing characters, it is treated as a blank line and is ignored by
the µCL language for indentation level determination. All lines in a sequence that are at the same column
number (ignoring blank lines) are considered to be at the same indentation level.

Determining the column number of a line is complicated by the TAB character (= code 8 decimal.) For µCL,
tab stops occur every 8 spaces. The occurrance of a tab advances the column number to the next multiple of 8
plus 1. The beginning of the line is at column 1. A tab at the beginning of a line advances to column 9 (= 8 +
1.) Another tab advances to column 17 (= 2×8 + 1.) A tab at column 13 also advances to column 17. For the
average µCL user, if the code looks properly indented on the screen, the compiler will "see" the same
indentation and behave accordingly.

Each time the column number for a line is greater than the previous printing line, the indentation level is
incremented by one. When the column number for a line is less than the previous printing line, the indentation
level reverts back to the last indentation level at that same column number. Some examples of different
indentation levels are shown below:

 # Column labels:
 # A B C D
 ...
 # Indentation level N:
 if a < b
 # Indentation level N + 1:
 if c < d
 # Indentation level N + 2:
 e := f
 else # Indentation level N + 1
 # Indentation level N + 2 again:
 # Note that it does not line up

 The µCL Language Specification

2.1 Character Sets and Indentation 3

 # with previous N + 2 level.
 # This ugly but legal.
 g := h

 # Indentationl level N again:
 i := j

The first indentation level occurs for lines in column A. The second indentation level occurs for lines in
column B. The third indentation level ocurrs in column C for the first occurance and in level D in the second
occurance. While this legal µCL code, it is strongly urged that you be consistent with indentation levels.
Having each indentation level vary by 4 columns is the recommended style.

The C, C++, and Java programming languages use braces ({ = code 123 decimal and } = code 125 decimal) to
indicate statement and declaration nesting. For programmers who type in braces without even thinking, the
µCL language permits braces and semi-colons to be inserted into valid µCL programs. The µCL language
ignores these characters except for computing column positions for indentation levels. Thus, the following
code fragment is also legal µCL program.

 if (a < b) {
 return a;
 } else {
 return b;
 }

µCL does not attempt to verify that the braces match. No further examples in this language use either braces
or semicolons.

2.2 Symbols, Constants, and Punctuation

In µCL, a program is first broken into a sequence of tokens. Each token is one of the following catagories:

Symbol
Symbols are used for variable names, procedure names, statement keywords, declaration keywords,
assembler opcodes, etc.

Literal
The word literal is the computer science word for a constant. There are number literals (decimal,
octal, hexadecimal, and floating point), string literals, and character literals.

Punctuation
There are binary operators (e.g. '+', '-', '*', '/', etc.), unary operators (e.g. '!', '~', '-', '+'), and grouping
operators (e.g. '(', ')', '[', ']'.)

Miscellaneous
The two miscellaneous tokens are end of line and line comment.

2.2.1 Symbols

In µCL, a symbol is a sequence of letters ('A'-'Z', 'a'-'z'), digits ('0'-'9'), dollar sign ('$'), and underscore ('_').
The followining restrictions are in place:

The first character of a symbol can be a letter or dollar sign. No underscores or digits are allowed at
the beginning.

•

The middle characters of symbol can be letters, digits, and underscores. No dollar signs are allowed.•
The last character of a symbol can be a letter or digit. No underscores or dollar signs are allowed.•

 The µCL Language Specification

2.2 Symbols, Constants, and Punctuation 4

Two underscores may not occur next to one another.•

As a point of clarification, a letter includes the standard ASCII letters in addition to the Latin-9 letters with
embedded punctuation.

Some examples of good symbols are listed below:

 a
 Z
 $c
 bunny
 StartHere
 start_here
 test1

Some examples of bad symbols are listed below:

 Special # Starts (and ends) with underscore
 Micro$oft # Dollar sign in middle
 Bad__news # Two underscores in a row
 1potato # Starts with digit

By convention, system libraries will tend to define symbols that start with a dollar sign ('$'). This allows µCL
programmers to freely pick names without having to worry about accidentally conflicting with a system
library symbol.

2.2.2 Constants

µCL supports decimal, hexadecimal, and floating point numbers, character constants, and string constants.

2.2.2.1 Decimal Numbers

A decimal number consists of one or more decimal digits ('0' through '9') inclusive. Some example decimal
numbers are shown below:

 0
 1
 9
 12
 1234567

2.2.2.2 Hexadecimal Numbers

A hexadecimal number starts with a "0x" or "0X" prefix. The prefix is followed by one or more hexadecimal
digits ('0'-'9', 'A'-'F', and 'a'-'f'.) Some example hexadecimal numbers are shown below:

 0x0
 0x1
 0x9
 0xa
 0xA
 0xf
 0xF
 0xf12
 0xABE

 The µCL Language Specification

2.2.1 Symbols 5

2.2.2.3 Floating Point Numbers

{Floating point is coming, but it has not been implemented yet. Thus, nothing in this section, 2.2.2.3, acutally
works yet.}

A floating point number constant is a decimal number with a decimal point ('.' = 46 code decimal) character in
it optionally followed by an exponent in "e" notation. "E" notation is the letter 'e' or 'E' followed by an
optional sign, '+' or '-', followed by a decimal number.

 0.
 .0
 0.0
 1.
 1.2
 1.2345
 123.45
 .1e-6 # .1×10-6

 1.23E-12 # 1.23×10-12

 9.87E8 # 9.8×108

Please note that 1e9 is not a valid floating point constant because there is no decimal point in the first number
(i.e. the mantissa.)

2.2.2.4 String Constants

String constants are enclosed in double quotes ('"' = code 34 decimal.) Only printing characters and spaces are
allowed between the quote characters. A pair of backslash characters ('\' = code 92 decimal) embedded in the
string is used to delineate the non-printing characters. The non-printing characters can be expressed as
decimal numbers, hexadecimal numbers, or symbolic names. Mulitple non-printing characters have their
number separated by a comma. The symbolic names come from the table below:

Symbol Value Symbol Value Symbol Value Symbol Value Symbol Value
nul 0 ht 9 dc2 18 esc 27 t 9
soh 1 lf 10 dc3 19 fs 28 n 10
stx 2 vt 11 dc4 20 gs 29 v 11
etx 3 ff 12 nak 21 rs 30 f 12
eot 4 cr 13 syn 22 us 31 r 13
enq 5 so 14 etb 23 sp 32 tab 8
ack 6 si 15 can 24 del 127 bsl 92
bel 7 dle 16 em 25 a 7 dq 34
bs 8 dc1 17 sub 26 b 8 sq 39

The symbols in the table come mostly from the ASCII control code symbols. The single letter codes are from
the escape codes used in C and C++. The last three codes are used to encode backslash (bsl = '\'), single quote
(sq = "'") and double quote (dq = '"'.) Some string constant examples are shown below:

 "" # Empty string
 "a" # String containing single letter "a"
 " " # String containing single space
 "Hello, World!\n\" # "Hello, World" followed by line feed
 "No.\tab\Desc.\lf\" # String with tab and line feed in it
 "\bsl\" # String containing single backslash

 The µCL Language Specification

2.2.2 Constants 6

 "'" # String containing single quote.
 "\sq\" # String containing single quote
 "\dq\" # String containing double quote
 "\dq\Hi\dq\" # String encloses "Hi" in double quotes
 "Done!\10,13\" # String followed by CR and LF
 "Done!\r,n\" # String followed by CR and LF
 "Done!\cr,lf\" # String followed by CR and LF

2.2.2.5 Character Constants

Character constants are just like string constants except that they are enclosed in single quotes and they must
contain a single character. Some character constant examples are shown below:

 'a' # The letter 'a'
 ' ' # A space
 '\tab\' # A tab
 '©' # A Latin-9 copyright '©'

2.2.3 Punctuation

The following tokens are used in µCL as binary operators:

Symbol Usage Symbol Usage Symbol Usage
+ Addition < Less Than << Shift Left
- Subtraction <= Less Than or Equals >> Shift Right
* Multiplication = Equals ~ Concatenate
/ Division != Not Equals && Conditional AND
% Remainder > Greater Than || Conditional OR
& Bitwise AND >= Greater Than or Equals , Expression Separate
| Bitwise OR @ Bit Selection
^ Bitwise XOR := Assignment

The following tokens are used as unary operators:

Symbol Usage
+ Positive
- Negative
~ Bitwise NOT
! Logical NOT

The remaining tokens are:

Symbol Usage Symbol Usage Symbol Usage
(Open Parenthesis) Close Parenthesis ? Arithmetic If
[Open Bracket] Close Bracket : Arithmetic If

 The µCL Language Specification

2.2.2 Constants 7

2.3 Comments

A comment line starts with a sharp (# = code 35 decimal) character and goes until the end of line. All
characters from the sharp character to the end of line are ignored by the µCL language. A comment can be
placed at the end of any line. Some examples of comments are listed below:

 # This is a one line comment followed by an empty line

 # This a sequence of comments that spans a total of
 # three lines. Each line is technically treated
 # as an independent comment by the compiler.

 global x float24 # A comment after a declaration.

2.4 Continuation Lines

Sometimes an expression gets too long to conveniently fit on one line in the editor. Such an expression can be
broken into multiple continuation lines using the following rules:

the last token on each continuation line (except the last one) must a punctuation token other than close
parenthesis (')') or close bracket (']'), and

•

each continuation line after the first one, must be indented by the same amount and it must be
indented more than the first continuation line.

•

Some examples should help clarify things.

Example 1:

 if a * b > c && d + e < f || # Cont. line 1
 g != 0 && h /g > 0 # Cont. line 2
 a := a + 1

In this example, the if statement expression is broken across two lines. The first line ends in '||' which tells the
compiler to look at the next line for the rest of the expression.

Example 2:

 call long_procedure_name(# Cont. line 1
 expression1, # Cont. line 2
 expression2) # Cont. line 3

In this example, the call statement is broken across three lines. The open parenthesis ('(') after
'long_procedure_name' indicates that the first line is continued onto the second. The second line ends in a
comma (',') which indicates that the second line continues to the third line. The third line ends in a close
parenthesis (')') which is one of the two punctuation characters that does not force a continuation line.

Here are some examples of bad continuation lines:

Example 3:

 call long_procedure_name(
 expression1, expression2)

 The µCL Language Specification

2.3 Comments 8

In this example, the first line ends in an open parenthesis ('('), but the second line is not indented by more than
the first line.

Example 4:

 call long_procedure_name(
 expression1,
 expression2)

In this example, second and third lines are not indented by the same amount.

 The µCL Language Specification

2.4 Continuation Lines 9

3 Types
The µCL language supports the following basic types:

Bit
A single bit that contains 1 or 0. In other progamming languages this is called Boolean or Logical. An
I/O pin is an important special case of the Bit type.

Unsigned Integer
An unsigned integer is one whose lowest legal value is 0 and its highest value depends up on the
number of bits available. Currently, µCL only supports 8 bit unsigned integers.

Signed Integer (unimplemented)
A signed integer is one that can represent postive numbers and zero. The largest legal value depends
upon the number of bits available.

Floating Point Number (unimplemented)
For µCL, a floating point number is one that can represent a number between approximately ±1038.

String
In µCL, a string is a read only sequence of characters.

In addition, µCL supports linear arrays of these types.

3.1 Bit

A bit can contain the values `0' and `1'. Bits can be stored in variables and transfered via assignment
statements.

Some examples of bit code are shown below:

 local a bit
 local b bit
 local c bit

 a := 1
 b := c
 c := a && c # a AND c
 a := !b # NOT b

3.2 Unsigned Integer

The unsigned integer types are listed in the table below:

Name Precision Lowest Value Highest Value Status
byte 8 Bits 0 255 Implemented
unsigned8 8 Bits 0 255 Unimplemented
unsigned16 16 Bits 0 65535 Unimplemented
unsigned24 24 Bits 0 16777215 Unimplemented
unsigned32 32 Bits 0 4294967295 Unimplemented

3 Types 10

The types byte and unsigned8 can be used interchangeably. On an 8-bit microcontroller, arithmetic using
the higher precisions takes more cycles to compute. Currently only byte is implemented.

Some example code with bytes is shown below:

 variable a byte
 variable b byte
 variable c byte

 a := 23
 b := a
 c := a + b << 3

3.3 Signed Integer

The signed integer types are listed in the table below:

Name Precision Lowest Value Highest Value Status
signed8 8 Bits -128 +127 Unimplemented
signed16 16 Bits -32769 +32768 Unimplemented
signed24 24 Bits -8388608 +8388607 Unimplemented
signed32 32 Bits -2147483648 +2147483647 Unimplemented

None of these types are currently implemented.

3.4 Floating Point

The floating point type is listed in the table below:

Name Precision Largest Number Smallest Number Digits of Accuracy Status
float32 32 Bits ±1038 ±10-38 ~7 Unimplemented

Notice that float24 and float32 can represent the same sized numbers; however, the number of digits of
accuracy varies. Lastly, the floating point arithmetic operations are significantly slower on the 8-bit
microcontrollers. The libraries that implement the operations take up a substantial amount of code space.

3.5 String

In µCL, a string is a read only string that is stored in program memory; strings can not be modified.

 local text string
 local chr byte
 local length byte

 text := "A string literal" # String assignment
 chr := text[3] # chr = 't'
 length := text.size # length = 16

 The µCL Language Specification

3.2 Unsigned Integer 11

3.6 Array

Any type can be put into an array. Arrays have a fixed size. The array can be indexed into with a byte (i.e.
unsigned8) index value. There is no bounds checking when accessing a byte array. The code below shows
some examples array types.

Some sample code with byte arrays is shown below:

 global buffer[10] array[byte] # Ten byte buffer
 global index byte
 global size byte

 index := buffer.size - 4
 buffer[0] := 0
 buffer[index] := 8
 buffer[index + 1] := buffer[index]
 buffer[23] := 17 # Out of bounds!
 size := buffer.size

{more here}

 The µCL Language Specification

3.6 Array 12

4 Declarations
All declarations occur at the outer most level in a program. With the exception of the procedure
declaration, all declarations are listed in alphabetical order in the following sections.

4.1 bind Declaration

The bind declaration has three different forms:

Simple bind Declaration
Defines a new variable that is equivalant to a previously defined global variable or
register.

Array bind Declaration
Defines a new variable that is equivalent to a specific entry in a global array.

Bit bind Declaration
Defines a new bit variable that is equivalent to a specific bit in a previously defined
global variable or register.

All three forms define a new variable that is in some way equivalent to a previously defined variable.

4.1.1 Simple bind Declaration

A simple bind delcaration has the following form:

bind new_name = old_name

where

new_name
is the new symbol name, and

old_name
is a previously defined register or global variable.

After a simple bind declaration, new_name is a variable that is equivalent to old_name.

For example, for the following declarations:

 global a byte
 register b = 0x88
 bind aa = a
 bind bb = b

the following are equivalant:

Original Equivalent
a := 17 aa := 17

b := 17 bb := 17

c := a + 1 c := aa + 1

c := b - 1 c := bb - 1

4 Declarations 13

where c is a simple global byte variable (e.g. global c byte.)

4.1.2 Array bind Declaration

An array bind declaration has the following form:

bind new_name = array_name [constant_expression]

where

new_name
is the new symbol name,

array_name
is a previously defined register_array or global array, and

constant_expression
is a constant expression.

After an array bind declaration, the new variable is equivalent to the specified array location.

For example:

 global state[12] array[byte]
 bind command = state[0]
 bind temporary = state[1]
 ...
 bind last = state[11]

defines a bunch of variables that live in an array of bytes. The following statements are equivalent:

Original Equivalent
state[0] := 17 command := 17

state[1] := 17 command := 17

state[11] := 17 last := 17

c := state[0] + 1 c := command + 1

c := state[1] - 1 c := temporary - 1

c := state[11] & 1 c := last & 1

where c is a simple global byte variable (e.g. global c byte.)

4.1.3 Bit bind Declaration

The bit bind declaration has the following form:

bind new_name = old_name @ constant_expression

where

new_name
is the new symbol name,

old_name

 The µCL Language Specification

4.1.1 Simple bind Declaration 14

is a previously defined register or global variable, and
constant_expression

is a constant expression that evaluates to a value between 0 and 7.

A new variable called new_name is defined that is equivalent to the specified bit expression.

For example,

 register $intcon 0xb
 bind $gie $intcon @ 7
 bind $eeie $intcon @ 6
 bind $t0ie $intcon @ 5
 bind $inte $intcon @ 4
 bind $rbie $intcon @ 3
 bind $t0if $intcon @ 2
 bind $intf $intcon @ 1
 bind $rbif $intcon @ 0

defines the various interrrupt enable bits for the $intcon register for the PIC16F84. For example the
following statements are equivalent

Original Equivalent
$intcon@7 := 1 $gie := 1

$intcon@4 := 0 $inte := 0

$intcon@1 := 0 $intf := 0

4.2 code_bank Declaration

The code_bank declaration has the follow form:

code_bank constant_expression

where

constant_expression
is an constant expression that evaluates to a valid code bank (typically between 0 and
3.)

This declaration specifies that until further notice, all procedure declarations are to be located in the
specified code bank.

For example,

 code_bank 0
 procedure interrupt
 ...

 code_bank 3
 procedure main
 ...

 The µCL Language Specification

4.1.3 Bit bind Declaration 15

causes the procedure named interrupt to be placed into code bank 0 and the procedure named main to be
placed into code bank 3.

4.3 configure Declaration

The form of the configure declaration is as follows:

configure option_name = option_value , ...

where

option_name
is a valid configuration word option name,

option_value
is a valid value for the specified configuration option.

This declaration is used to specify the various configuration options required to set up the microcontroller
configuration word (or words.)

For example, the configure declarations below set up the configuration options for a PIC16F767:

 configure cp=off, cpmx=rc1, debug=off, borv=borv00, boren=off
 configure mclre=off, pwrte=off, wdte=off, fosc=hs
 configure borsen=off, ieso=off, fcmen=off

Note that configuration options can be changed. Thus, the initial default configuration options can be defined
in a library file and the main program can subsequently override them. The options in effect at the end the
program are the ones that are actually output to the final output file.

The valid configuration options are listed under the processor declaration. Thus, all configure
declarations must occur after the processor declaration.

4.4 constant Declaration

The constant declaration has the following form:

constant new_name = constant_expression

where

new_name
is the name of the constant, and

constant_expression
is a expression that evaulates to a constant value.

Some example constant declarations are shown below:

 constant crystal_speed = 20000000
 constant instructions_per_second = crystal_speed / 4
 constant prefix = "Hello "
 constant george = prefix ~ "George"

 The µCL Language Specification

4.2 code_bank Declaration 16

 constant alice = prefix ~ "Alice"
 constant bottom = -$u2i(8)
 constant pi = 3.14151926
 constant pi2 = pi / 2.0

note that the constants can be either numerical or string (i.e. string concatenation.)

The constant declarations are evaluated in sequence. No forward references to constants that are defined later
on are permitted.

4.5 data_bank Declaration

The data_bank declarations has the following form:

bank constant_expression

where

constant_expression
is the register bank to select.

Some microcontrollers have more than one bank of memory (e.g. the PIC1687x). The data_bank
declaration is used to select which memory bank to allocate subsequent variables from.

The programmer is responsible for ensuring that the memory within a given bank are not exhausted. The
compiler will generate an error message if the number of registers within a given bank are exhausted.

The compiler is responsible for generating the additional data bank select instructions for accessing variables
that located in various different memory banks.

4.6 debug Declaration

The debug declaration has the following form:

debug procedure_name , ...

where

procedure_name
is the name of a procedure.

The declaration declares the procedures for which additional debugging code will be inserted. Each
procedure listed in a debug declaration can support break points when being used by the µCL integrated
programming environment.

4.7 icd2 Declaration

The form of the icd2 declaration is as follows:

icd2

 The µCL Language Specification

4.4 constant Declaration 17

This declaration tells the compiler to use the various configurations needed for Microchip In Circuit Debugger
2. Obviously, this declaration is extremely specific to the microchip product line.

4.8 icd2_configure Declaration

The form of the icd2_configure declaration is as follows:

icd2_configure option_name = option_value , ...

where

option_name
is a valid configuration word option name,

option_value
is a valid value for the specified configuration option.

This declaration is used to specify the various configuration options required to set up the microcontroller
configuration word (or words) for the Microchip ICD2. This declaration is very specific to the Microchip
product line.

For example, the ICD2 configure declarations below set up the configuration options for a PIC16F767:

 icd2_configure cp=off, cpmx=rc1, debug=on, borv=borv00, boren=off
 icd2_configure mclre=off, pwrte=off, wdte=off, fosc=hs
 icd2_configure borsen=off, ieso=off, fcmen=off

{Note: Fix compiler to use this declaration.}

4.9 global Declaration

There are two related forms for the global declaration:

Simple global Declaration
This declares a simple global variable

Array global Declaration
This declares a global array.

The defined global variable is accessible from all procedures.

4.9.1 Simple global Declaration

A simple global declaration has the following form:

global variable_name variable_type

where

variable_name
is the name of the new global variable, and

variable_type

 The µCL Language Specification

4.7 icd2 Declaration 18

is the type of the new global variable.

For example,

 global trace bit
 global command byte

 ...

 procecdure main
 ...

 if trace
 call $uart_byte_print(command)
 trace := 0

shows the definition of two global variables, trace and command, where the first is of type bit and the
second is of tyhpe byte. Later on in the procedure main, both trace and command are accessed.

4.9.2 Array global Declaration

The array global declaration has the following form:

global array_name [size_expression] array [simple_type]

where

array_name
is the variable name for the global array,

size_expression
is an expression that evaluates to a constant that specifies the array size, and

simple_type
is the type of each element in the global array. Currently, only byte is allowed.

The defined global variable is an array that is accessable from all procedures.

For example,

 global buffer[16] array[byte]
 global buffer_in byte

 ...

 procecdure main
 ...

 variable datum byte

 ...

 buffer_in := buffer_in & 0xf
 buffer[buffer_in] := datum

 The µCL Language Specification

4.9.1 Simple global Declaration 19

shows the definition of the global variable buffer which is an array of 16 bytes. Later on in the main
procedure, datum is stored into buffer.

4.10 library Declaration

The library declaration has the following form:

library library_name

where

library_name
is the name of the library to use with the program.

All of the declarations from the library file are included into the main program.

A library named my_library will have a file name of my_library.ucl. A library file can reside in
either the µCL system directory/folder, or in the directory/folder that contains the main program. If a file with
the same name resides in both directories/folders, the compiler will complain about the ambiguity and refuse
to load either one. {Actually, I've been burned by this several times, and I need to add the test!}

When it comes to constant declarations that reside in an µCL library, care must be taken to ensure that
there are no forward references. Thus, if constant1 is defined in library1 and constant2 is defined
using constant1 in library2, library1 must be referenced before library2.

 # In library1.ucl:
 ...
 constant constant1 = 1
 ...

 # In library2.ucl:
 ...
 constant constant2 = constant1 * 3
 ...

 # In main.ucl:
 ...
 library library1 # Defines constant1
 library library2 # Defines constant2

By convention, library names that start with a dollar sign ('$') are system libraries and library names that do
not start with a '$' are user supplied libraries. By convention, system libraries should only define symbols with
a dollar sign in them in order to avoid conflicts with user supplied symbols.

Some example code using the library declarations is shown below:

 library $pic16f767 # System definitions for PIC16F767
 library navigate # User navigation package

The library $pic16f767 contains a whole slew of constant and bind declarations that declare symbols
that start with a `$'. The librarynavigate is a user library where symbols start with the letters 'a' through 'z'.

 The µCL Language Specification

4.9.2 Array global Declaration 20

Libraries can recursively reference other libraries. Thus, the library $pic16f767 loads the library
$pic16f7x7.

The compiler will only load a library once. If a library is referenced a second time, the compiler silently
ignores the second load request. For those of you who know what the word idempotent means, µCL libraries
are idempotent.

µCL libraries can contain procedure declarations. The compiler delays producing code for these loaded
procedures until after it has produced code for the main procedures. The library_bank declaration allow
you to load libraries into different code banks.

4.11 library_bank Declaration

The library_bank declaration has the following form:

library_bank bank_expression

where

bank_expression
is an expression that evaluates to a constant, typically between 0 and 3 inclusive.

This declaration specifies that any procedures loaded from a library will be loaded into the bank_expression
code bank.

For example,

 ...
 library_bank 2
 library $float32
 library_bank 3
 library $trig

4.12 origin Declaration

The origin declaration has the following form:

origin constant_expression

where

constant_expression
is the a constant expression that specifies where subsequently generated code is to be
placed.

The origin declaration is used to retarget code placement.

For microcontrollers that have the concept of code banks (e.g. the PIC1687x), the origin declaration uses the
high order bits of the origin to implicitly set the code bank. It is up to the programmer to manage the
placement of procedures within code banks using the origin declaration. The compiler will generate an error if
the procedures within a given code bank spill over into another code bank.

 The µCL Language Specification

4.10 library Declaration 21

The compiler is responsible for generating the appropriate additional instructions for placing calls from
procedures in one code bank to procedures in a different code bank.

4.13 package Declaration

The package declaration has the following form:

package name
=> pin_declarations

...
<=

where

name
is the name of the desired package, and

pin_delcarations
is an indented list of pin declarations.

The package declaration selects which integrated circuit package is being used for a particular
microcontroller project. The subsequent nested pin declarations further identify how the various pins on the
microcontroller are being used. Using this information, the compiler generates the appropriate initialization
code for specified pin usages.

Many microcontrollers are supplied more than one package (e.g. DIP, SOIC, SSOP, etc.) For example, the
PIC16F87 comes in an 18-pin dual in-line package (DIP), an 18-pin small outline integrated circuit (SOIC), a
20-pin small shrink outline package (SSOP), and a 28-pin quad flat no leads package (QFN). When you select
a particular package for your project, the package declaration helps capture the relevant information about
how the package is being used.

4.13.1 pin Declaration

The pin declarations has the following form:

pin pin_number = pin_usage , new_name = usage , ...

where

pin_number
is the decimal pin number being selected,

pin_usage
is the pin usage,

name
is a new variable or constant, and

usage
is one of name, bit, or mask.

Everything up to the first comma is required; everthing from the comma onwards is optional. The pin_number
and pin_usage must match the corresponding information in the processor declaration. If they do not

 The µCL Language Specification

4.12 origin Declaration 22

match, the compiler generates a fatal error.

The table below summarizes what happens for name, bit, and mask binding:

pin Syntax Is Equivalent To
new_name = name bind new_name = port_name @ bit_number
new_name = bit constant new_name = bit_number
new_name = mask constant new_name = 1 << bit_number

4.13.2 package Example

The example below shows an example of a package declaration:

 library $pic16f676

 package pdip
 pin 1 = power_supply
 pin 2 = clkin
 pin 3 = an3
 pin 4 = mclr
 pin 5 = rc5_out, name=coil0a, mask=coil0a_mask
 pin 6 = rc4_out, name=coil0b, mask=coil0b_mask
 pin 7 = rc3_out, name=coil1a, mask=coil1a_mask
 pin 8 = rc2_out, name=coil1b, mask=coil1b_mask
 pin 9 = rc1_in, name=step
 pin 10 = rc0_in, name=dir
 pin 11 = ra2_in, name=mode
 pin 12 = ra1_in
 pin 13 = an0
 pin 14 = ground

In this example, the microcontroller being used is the PIC16F676. The processor declaration is in the
$pic16f676 library. The 14-pin plastic DIP (pdip) package is being used for this particular project. Pin 1
and 14 are used for the power supply and ground respectively. Pin 2 is used as an oscillator input and pin 4 is
used for master clear. Pins 5 through 8 are used as digital outputs on port C bits 2 through 5. Pins 9 through 12
are digital inputs on port C bits 0 and 1 and port A bits 1 and 2. Pin 3 and 13 are analog inputs for A/D selects
of 0 and 3. All of the digital I/O pins are given names (i.e. coil0a, coil0b, coil1a, coil1b, step,
dir, and mode.) The digital output pins also have bit masks defined (i.e. coil0a_mask, coil0b_mask,
coil1a_mask, coil1b_mask.) As you can see, there is quite a bit of documentation about the project
embedded into the package declaration.

4.14 processor Declaration

The package declaration has the following form:

processor name
=> processor_declarations

...
<=

where

 The µCL Language Specification

4.13.1 pin Declaration 23

name
is the processor name, and

processor_delcarations
is an indented list of processor declarations.

The processor_declarations are listed in alphabetical order in the sections that follow.

4.14.1 code_bank Declaration

The code_bank declaration has the following format:

code_bank start_address : start_address

where

start_expression
is the address of the first instruction location in the code bank, and

end_expression
is the address of the last instruction location in the code bank.

This declaration specifies the starting address and ending address of one code bank for the processor. For the
PIC16 series of processors, most code banks are 2K words in size.

4.14.2 configure_address Declaration

The configure_address declaration has the following format:

configure_address address_expression

where

address_expression
is a constant expression that specifies the address in the Intel Hex file at which the
configuration word is located.

The address specified by this declaration is used by all following configure_fill and
configure_option declarations.

A configure_address declaration can occur more than once. Each configure_address declaration
remains in effect until superceeded by the next configure_address declaration. Multiple
configure_address declarations are only needed for microcontrollers that have more than one
configuration word (e.g. the PIC16F7x7 series.)

4.14.3 configure_fill Declaration

The configure_fill declaration has the following format:

configure_fill fill_mask_expression

where

 The µCL Language Specification

4.14 processor Declaration 24

fill_mask_expression
is a constant expression of a value that is always OR'ed into the current configuration
word.

This declaration is used to set one or bits of the current configuration word to a 1.

4.14.4 configure_option Declaration

The configure_option declaration has the following format:

configure_option field_name : option_name = option_value

where

field_name
is the name of the configuration word field that is being specified,

selection_name
is the name of the configuration selection, and

option_value
is a constant expression that specifies what bits to OR into the configuration word if
selected.

Each configuration_option specifies a possible value for a configuration word field. The
configure declaration is used to set up the configuration word (or words) for project.

4.14.5 data_bank Declaration

The data_bank declaration has the following format:

data_bank start_address : end_address

where

start_address
is the address of the first memory address in the data bank, and

end_address
is the address of the last memory address in the data bank.

This declration specifies the first and last addresses of a processor data bank. For the PIC16 series of
microcontrollers, data banks are typically 128 bytes in size.

4.14.6 global_region Declaration

The global_region declaration has the following format:

global_region start_address : end_address

where

start_address

 The µCL Language Specification

4.14.3 configure_fill Declaration 25

is the address of the first memory address of a global memory region, and
end_address

is the address of the last memory address of the same global memory region.

The compiler uses a global region to allocate variables from (i.e. global variables, procedure arguments, local
varaibles, temporary variables, etc.)

4.14.7 icd2_global_region Declaration

The icd2_global_region declaration has the following format:

icd2_global_region start_address : end_address

where

start_address
is the address of the first memory address of a global memory region, and

end_address
is the address of the last memory address of the same global memory region.

The compiler uses a global region to allocate variables from (i.e. global variables, procedure arguments, local
varaibles, temporary variables, etc.) When the In Circuit Debugger 2 is enabled, this global region is used for
allocation instead.

4.14.8 icd2_shared_region Declaration

The icd2_shared_region declaration has the following format:

icd2_shared_region start_address : end_address

where

start_address
is the address of the first memory location where is sharable across multiple data
memory banks, and

end_address
is the address of the last memory location where is sharable across multiple data
memory banks.

This declaration identifies a region of shared variables to be used when the In Circuit Debugger 2 (ICD2) is
enabled.

4.14.9 interrupts_possible Declaration

The interrupts_possible declaration has the following format:

interrupts_possible

When this declaration is present, it specifies that interrupts are supported by the microntroller. Thus, an
interrupt procedure named interrupt is allowed.

 The µCL Language Specification

4.14.6 global_region Declaration 26

4.14.10 osccal_at_address Declaration

The osccal_at_address declaration has the following format:

osccal_at_address address_expression

where

address_expression
is the address address at which the oscillator callibration RETLW instruction is
located.

Some of the PIC16 microcontrollers store an osscillator callibration value in program memory as a RETLW
instruction. This declaration informs the compiler that the currently defined processor does this and where in
program memory the RETLW instruction is located.

4.14.11 osccal_in_w Declaration

The osccal_in_w declaration has the following format:

osccal_in_w

When this declaration is present, it specifies that the oscillator callibration value is loaded into the W register
at the beginning of processor start up. The compiler will take this value and stuff it into the appropriate
oscillator callibration register.

4.14.12 osccal_register_symbol Declaration

The osccal_register_symbol declaration has the following format:

osccal_register_symbol osccal_register_name

where

osccal_register_name
is the name of the oscillator callibration register.

The compiler uses this register name when generating code for the osccal_in_w or
oscal_at_address declaration.

4.14.13 packages Declaration

The packages declaration has the following format:

packages package_name = number_of_pins , ...

where

package_name
is the name of a package, and

 The µCL Language Specification

4.14.10 osccal_at_address Declaration 27

number_of_pins
is the number of pins on the package.

4.14.14 pin Declaration

The pin declaration has the following format:

pin pin_usage , ...
=> pin_declarations

...
<=

where

pin_usage
is the name an acceptable pin usage for the pin, and

pin_declarations
is an indented list of pin declarations.

The various pin_declarations are listed alphabetically in the sections below.

4.14.14.1 bind_to Declaration

The bind_to declaration has the following form:

bind_to port_name @ bit_number

where

port_name
is the name of the port associated with the pin, and

bit_number
is the bit number in the port associated with the pin.

4.14.14.2 or_if Declaration

The or_if declaration has the following form:

or_if pin_usage register_name or_value

where

pin_usage
is one of the pin usage names listed by the pin declaration one level up,

register_name
is a register name to OR an initalization value into, and

or_value
is the value that is value that is OR'ed in.

 The µCL Language Specification

4.14.13 packages Declaration 28

4.14.14.3 pin_bindings Declaration

The pin_bindings declaration has the following form:

pin_bindings package_name = pin_number , ...

where

package_name
is a valid package name, and

pin_number
is the pin number assoicated with the pin for the specified package.

{more goes here}

4.14.15 shared_region Declaration

The shared_region declaration has the following format:

shared_region start_address : end_address

where

start_address
is the address of the first memory location where is sharable across multiple data
memory banks, and

end_address
is the address of the last memory location where is sharable across multiple data
memory banks.

4.14.16 processor Example

An example processor declaration for the 8-pin PIC12C675 is shown below:

 processor pic12f675

The name of the processor, pic12f675, immediately follows processor.

 configure_address 0x2007
 configure_fill 0x0

Next, the configuration word is declared. There is one configuration word that is at address 0x2007 as
specified by the configuration_address declaration. The configuration word has 8 fields starting with
bg through fosc. While 3 bits of the configuration word are unimplemented, the microcontroller
specification sheet says that they should be written as zeros; thus, configuration_fill is set to 0.

 configure_option bg: bg11 = 0x3000
 configure_option bg: bg10 = 0x2000
 configure_option bg: bg01 = 0x1000
 configure_option bg: bg00 = 0x0000
 configure_option cpd: on = 0x000
 configure_option cpd: off = 0x100

 The µCL Language Specification

4.14.14 pin Declaration 29

Only 2 fields are shown to keep the example size down. The bg field has four possible values of bg11,
bg10, bg01, and bg00 with configuration word mask values of 0x3000, 0x2000, 0x1000, and 0
respectively. The cpd field has two possible values of on and off with values of 0x000 and 0x100
respectively.

 code_bank 0x0 : 0x3ff

There is one code bank of 1024 (0x400) words in size.

 data_bank 0x0 : 0x7f
 data_bank 0x80 : 0xff

There are two data banks, where the first data bank is from 0 through 0x7f and the other is from 0x80 through
0xff.

 shared_region 0x20 : 0x5f

This microcontroller is a little strange because all of its memory is accessible from both data banks. Thus,
there are no global_region declarations.

 interrupts_possible

This microcontorller supports interrupts.

 osccal_register_symbol $osccal
 osccal_at_address 0x3ff

The oscillator callibration value is stored as a RETLW instruction at program memory address 0x3ff as
spciffied by the osccal_at_address. The register that contains the oscillator callibration value is
$osccal as specified by the osccal_register_symbol declaration.

 packages pdip=8, soic=8, dfn_s=8

This microcontroller comes in 3 different packages -- pdip, soic, and dfn_s. All three packages have 8
pins each.

 pin vdd, power_supply
 pin_bindings pdip=1, soic=1, dfn_s=1

The power supply pin is called either vdd or power_supply. It is located on pin 1 for all three packages as
is listed in the pin_bindings declaration.

 pin gp5_in, gp5_out, t1cki, osc1, clkin, gp5_unused
 pin_bindings pdip=2, soic=2, dfn_s=2
 bind_to $gpio@5
 or_if gp5_in $trisio 16
 or_if gp5_out $trisio 0
 or_if t1cki $trisio 16
 or_if osc1 $trisio 16
 or_if clkin $trisio 16
 or_if gp5_unused $trisio 16

The GP5 pin can be called gp5_in, gp5_out, t1cki, osc1, clkin, or gp5_unsused. The
pin_bindings declaration binds these names to pin 2 on all three packages. When used as a digital input

 The µCL Language Specification

4.14.16 processor Example 30

or output, the pin is connected to bit 5 of the $gpio register as specified by the bind_to declaration. The
six or_if declarations specify what value to OR into the $trisio register depending upon how the pin is
used. In general, by setting the $trisio bit 5 to a 1, sets it as an input. Only when gp5_out is specified,
does the $trisio bit 5 get set to 0.

As you can see there a a lot of information to specify for each new microcontroller, but once it is specified,
the end-user does not need to be worry about it.

4.15 register Declaration

The register declaration has the following form:

register name = address , ...

where

name
is the name of the register, and

address
is a memory address that accesses the register. There can be multiple addresses for
those registers that accessible from different data memory banks.

An example of some register delcarations is listed below:

 register $indf = 0, 0x80

The $indf register is accessible from both data memory banks at address 0 and 0x80.

 register $tmr0 = 1

The $tmr0 register is accessible from the first memory bank at address 1.

 register $pcl = 2, 0x82

 register $status = 3, 0x83

Both the $pcl and $status registers are accessible from both memory banks.

4.16 register_array Declaration

The register_array declaration has the following form:

register_array name start_address size_expression

where

name
is the name of the register array,

first_constant_expression...
is a constant expression that evaluates to the address of the first register, and

size_expression

 The µCL Language Specification

4.15 register Declaration 31

is a constant expression that specifies how many registers are in the array.

The register_array specifies an array of bytes at specific address for a specific size. Frankly, it is kind
of a hack and I need to figure out a better way of accomplishing the task.

4.17 string Declaration

The string declaration has the following form:

string strings_name = string_expression

where

strings_name
is a name of the string, and

string_expression
is the value of the string.

This declaration defines a global string that can accessed from any procedure.

The following example shows a string declaration and some code that access the string:

 ...
 string hello = "Hello world!\cr,lf\"
 ...

 procedure main
 ...
 local index byte

 ...
 index := 0
 loop_exactly hello.size
 call $uart_byte_put(hello[index])
 index := index + 1
 ...

The string hello is declared to have a value of "Hello world!\cr,lf\" in the string declaration.
Later on, the code prints out the string value using a loop_exactly loop. The size of the string is accessed
via hello.size. Individual characters are accessed via hello[index].

4.18 ucl Declaration

The ucl declaration has the following form:

ucl major . minor

where

major
is the µCL major version number, and

minor

 The µCL Language Specification

4.16 register_array Declaration 32

is the µCL minor version number.

 The µCL Language Specification

4.18 ucl Declaration 33

5 procedure Declaration
The procedure declaration has the following form:

procedure name
=> argument_declarations

return_declaration
optional_exact_delay_declaration
local_declarations
statement_declarations
...

<=

where

name
is the procedure name,

arguement_declarations
is either an arugments_none declaration or one or more argument declarations,

return_declaration
is either a returns declaration, or returns_nothing declaration,

optional_exact_delay_declaration
is an optiona exact_delay declaration,

local_declarations
is one or more local variable declarations, and

statement_declarations
is one or more statement declarations.

Everything after the first line is indented by one level.

There are currently two special procedure names -- main and interrupt. The main procedure is the
where program execution starts. The compiler places register initialization code into the beginning of the
main procedure. The interrupt procedure is called each time an interrupt occurs. The compiler adds code
to save and restore both the W and status registers for the interrupt procedcure. {Eventually, it will save
and restore the FSR register as well.}

5.1 argument Declaration

The argument declaration has the following form:

argument name type

where

name
is the argument name, and

type
is the argument type -- currently one of bit or byte.

5 procedure Declaration 34

There is one argument declaration for each procedure argument passed in.

5.2 arguments_none Declaration

The arguments_none declaration has the following form:

arguments_none

This specifies that the procedure has no arguments.

5.3 exact_delay Declartion

The exact_delay declaration has the following form:

exact_delay cycles_expression

where

cycles_expression
is the exact number of processor that the procedure should take.

This declaration that takes exactly cycles_expression cycles to execute. This means that conditional code
generated for `if', `&&', and `||' will be padded with NOP instructions to ensure that each path taken through
the code takes exactly the same number of instruction cycles.

5.4 local Declaration

The local declartion has two possible forms:

Simple local Declaration
This form defines a simple local variable. Currently, on type of bit and byte are
supported.

Array local Declaration
This form define a local array variable. Currently, only an array of bytes is supported.

5.4.1 Simple local Declaration

The simple local declaration has the following form:

local name type

where

name
is the local variable name, and

type
is the local variable type -- currently one of bit or byte.

 The µCL Language Specification

5.1 argument Declaration 35

All local declaration defines a variable that is local to the procedure body. It is not possible for one
procedure to directly access the local variables of another procedure. There are no nested variables in this
language.

5.4.2 Array local Declaration

The array local declaration has the following form:

local name [size_expression] array [type]

where

name
is the local array variable name,

size_expression
is the array size, and

type
is the type of each array element. Currently, only of byte is supported.

All `variable' statements defines a variable that is local to the procedure body. It is not possible for one
procedure to directly access the local variables of another procedure. There are no nested variables in this
language. A variable that occures deep within a some nested statements is accessible through out the entire
procedure.

5.5 returns Statement

The returns declaration has the following form:

returns type , ...

where

type...
is the type for each returned value.

This declaration lists one or more return types. Unlike most other programming languages, µCL allows for the
return of more than one value from a procedure call.

5.6 returns_nothing Declaration

The returns_nothing declaration has the following form:

returns_nothing

This declaration specifies that the procedure returns no values.

 The µCL Language Specification

5.4.1 Simple local Declaration 36

6 Statements
Statements can only occur within the body of procedure declaration. The various statements are listed
alphabetically below.

6.1 assemble Statement

The assemble statement has the following form:

assemble

=> assembly_lines
...

<=

where

assemble_lines
is a list of assembly statements to insert into the code.

The assembly lines have one of the following forms:

Form Descripton
opcode Instruction with no operands
opcode operand Instruction with one operand
opcode operand1, operand2 Instruction with two operands
:label Label definition (note that : is before label name)
define name = expression Constant definition

The following instruction opcodes are currently supported:

Opcode Operands Description Operation
addlw k ADD k to W W := W + k
addwf f, d Add W and f W|f := W + f
andlw k AND k to W W := W & k
andwf f,d AND W and f W|f := W & f
bcf f, b Bit clear f f@b := 0
bsf f, b Bit set f f@b := 1
btfsc f, b Bit test f, skip if clear if !f@b then skip
btfss f, b Bit test f, skip if set if f@b then skip
call a Call subroutine at a call a()
clrf f Clear f f := 0
clrwdt Clear watchdog timer
clrwf Clear W W := 0
comf f d Complement f W|f := ~f

6 Statements 37

decf f, d Decrement f W|f := f - 1
decfsz f d Decrement f, skip if 0 W|f := f - 1; if W|f = 0 then skip
goto a a Go to address a goto a
incf f, d Increment f W|f := f + 1
incfsz f, d Increment f, skip if 0 W|f := f + 1; if W|f = 0 then skip
iorwf f, d Inclusive OR W and f W|f := W | f
iorlw k Inclusive k to W W := W | k
movf f, d Move f W|f := f
movwf f Move W to f f := W
movlw k Move k to W W := k
nop No Operation
option Option instruction
retfie Return from interrupt

retlw k Return from subroutine with k in
W W := k ; return

return Return from subroutine return
rlf f, d Rotate left through carry
rrf f, d Rotate right through carry
sleep Enter low power mode
sublw k Subtract W from k W := k - W
subwf f, d Subtract W from f W|f := f - W

swapwf f, d Swap nibbles in f W|f := ((f & 0xf) << 4) | ((f >> 4) &
0xf)

xorwf f, d Exclusive OR W and f W|f := W ^ f
xorlw k Exclusive OR k to W W := W ^ k

The example below shows the assemble statement in action:

 ...
 procedure left_rotate
 argument value byte
 returns_nothing

 # This procedure will return the value of
 # rotation value to the left by 8 bits.

 # {value} is sitting in W:
 $c := value@7
 assemble
 rlf left_rotate__value, w
 return

This procedure will take an 8-bit byte value and rotate it left in 8-bits. The first statement will set the carry bit
($c) to the the high order bit of value. The assemble statement executes an RLF instruction. The full
name of the argument is the procedure name left_rotate, followed by two underscores __, followed by
the argument name value, resulting in left_rotate__value. The result is in the W register, so a
simple RETURN instruction ends the procedure.

 The µCL Language Specification

6.1 assemble Statement 38

6.2 Assignment Statement

The assignment statement has two possible forms:

Simple Assignment
Simple assignment takes the result of an expression and assigns it to a variable.

Multiple Assignment
Multiple assignme takes several results from an expression and assigns it to two or
more variables.

The assignment statement is unique in that it is the only statement that does not start off with keyword.
Instead, the parser prescans the line and if it encounters an assignment operator (:=), it assumes the entire
statement is an assignment statement.

6.2.1 Simple Assignment Statement

The simple assignement statement has the form:

variable := expression

where

variable
is either a simple variable or an array variable (e.g. array_name[index_expression]),
and

expression
is an evaluated expression that is assigned into variable.

6.2.2 Multiple Assignment Statement

The multiple assignement statement has the form:

variable1 , ... , variablen := multiple_expression

where

variablei
is either a simple variable or an array variable (e.g. array_name[index_expression]),
and

multiple_expression
is an evaluated expression that that has multiple values.

The type of the variables and expressions must match up.

The following example shows a simple multiple assignment:

 procedure main
 ...
 local a byte
 local b byte

 The µCL Language Specification

6.2 Assignment Statement 39

 ...
 # Swap A and B:
 a, b := b, a

Another example is shown below:

 procedure $uart_byte_read
 argurment usec_wait byte
 returns bit, byte

 while ...
 value := ...
 # No time out:
 return 0, value
 # Time out:
 return 1, 0

 procedure main
 ...
 local command byte
 local time_out bit
 ...

 time_out, command := $uart_byte_read(100)
 if time_out
 ...
 else
 ...

For this code fragment, there is a procedure called $uart_byte_read that takes a single argument
usec_wait that specifies the maximum wait time for read a byte form the UART (Universal Asynchronous
Receiver Transmitter). If a byte is recevied before the time out period has elapsed, the time out bit is returned
a 0 and the UART value is returned as they byte value. Otherwise, a time out has occured and the time out bit
is returned as a 1 and the value is returned as 0. Later on in the main procedure, $uart_byte_read is
invoked and its two return values are assigned to the local variables time_out and command via a multiple
assignment.

6.3 call Statement

The call statement has the following form:

call procedure_name (argument_expressions)

where

procedure_name
is the name of the procedure to be called, and

argument_expressions
is a list of zero, one, or more expressions to be evaulated and passed as arguments to
the procedure.

The number and type of each argument expressions must match the procedure types.

The call statement is used to call procedures that have no return values (i.e. returns_nothing). In
addition, the call statement can be used to invoke a procedure that returns values, but where the return

 The µCL Language Specification

6.2.2 Multiple Assignment Statement 40

values are not needed.

6.4 delay Statement

The delay statement has the following form:

delay
expression
=> statements

...
<=

where

expession
is a constant expression that specifies the exact number of instruction cycles to be to
be executed, and

statements
is a nested sequence statements that are executed. Each statement in statements is
compiled to have uniform execution time. Conditional code, like `if', `&&', and `||', is
padded with nop instructions to cause the excution time to be uniform.

Each procedure called in statements must have a exact_delay declartion in its procedure declaration.

The example below delays for 50 µSec

 # 5 cycles per microsecond
 constant usec = 5

 procedure main
 ...

 # Delay for 50 usec:
 delay 50 * usec
 do_nothing

6.5 delay_set Statement

The delay_set statement has the following form:

delay_set
expression
=> statements

...
<=

where

expression

 The µCL Language Specification

6.3 call Statement 41

is a constant expression that sets the delay value that the compiler will use for the
nested statements, and

statements
is a nested sequence of statements.

This statement is used to tell the compiler exactly how many cycles a give chunk of code is supposed to take.

6.6 do_nothing Statement

The do_nothing statement has the following form:

do_nothing

In fact, this statement does not do anything.

6.7 if Statement

The if statement has the following form:

if
bit_expression
=> statements

...
<=
else_if
bit_expression
=> statements

...
<=
else

=> statements
...

<=

where

bit_expression
is an expression that evaluates to a bit value, and

statements
is a nested sequence of statements to be executed if bit_expression evaluates to 1 (i.e.
true.)

There can be zero, one or more else_if clauses. The else clause is optional. The first if clause and its
nested statement block is required.

At most, only one nested statement block is executed. The first bit_expression that evaluates to 1 (i.e. true)
causes the associated statement block to be executed. If none of the bit_expression's evaluate to 1, the else

 The µCL Language Specification

6.5 delay_set Statement 42

clause statement block is executed (if present.)

6.8 loop_exactly Statement

The loop_exactly statement has the following form:

loop_exactly
expression
=> statements

...
<=

where

expression
is the number of times the expression is executed, and

statements
is the nested statement block that is executed each iteration through the loop.

Note that expression must evaluate to a non-zero value. {This is a bogus restriction and needs to be fixed.}

6.9 loop_forever Statement

The loop_forever statement has the following form:

loop_forever

=> statements
...

<=

where

statements
is a nested statement block that is continuosly executed.

For embedded applications, the main procedure typically has a loop_forever statement, since it never
makes sense to return from main.

6.10 return Statement

The return statement has the following form:

return expression , ...

where

expression

 The µCL Language Specification

6.7 if Statement 43

is an expression that is evaluated and returned from the procedure.

The number and type of expressions in the return statement must match the types in the returns clause
for the enclosing procedure declaration. If the procedure declaration has a returns_nothing
clause, the return statement must not have any expression.

6.11 switch Statement

The switch statement has the following form:

switch
switch_expression

=> case_maximum
maximum_expression
case
case_expression1
=> statements

...
<=
...
case
case_expressionN
=> statements

...
<=
default

=> statements
...

<=
<=

where

switch_expression
is an expression is used to steer the switch,

maximum_expression
is a constant expression that specifies the maximum possible value of
switch_expression,

case_expressioni
is a constant expression, and

statements
is a nested statements block.

The switch_body consists of a sequence of one or more case_clause's, followed by an optional default_clause.
The expression is evaluated and control is transfered to one of the clauses. Only case_clause's, a
default_clause, comments and blank lines can occur inside of switch_body.

 The µCL Language Specification

6.10 return Statement 44

An example switch statement is shown below:

 switch command >> 5
 case_maximum 7
 case 0
 # First command:
 ...
 case 1, 2
 # Second and third commands:
 ...
 case 3
 # Forth command:
 ...
 default
 # All other commands are undefined:
 ...

6.12 watch_dog_reset Statement

The watch_dog_reset statement has the following form:

watch_dog_reset

This statement generates the code to reset a watch dog timer in a microcontroller.

6.13 while Statement

The while statement has the following form:

while
while_expression
=> statements

...
<=

where

while_expression
is an expression the returns a bit value,

statements
is the indented statemenst for the while loop.

This statement will evaluate while_expression and if it evaluates to 1 (i.e. true) it will execute the indented
statement block statements. It will do this repeatabley until while_expression evaluates to 0 (i.e. false.)

 The µCL Language Specification

6.11 switch Statement 45

7 Expressions
Expressions in µCL are modeled after expressions in ANSI-C. There are a few differences between µCL
expressions and C expressions.

7.1 Differences from C Expressions

If you do not know C-expressions, you should probably skip reading this section.

The differences from C-expressions itemized below:

The µCL assignment operator is `:=', not `=' as in C.•
Serial assignment (e.g. `a := b := c := 0') is not allowed in µCL, whereas it is allowed in C.•
In-line assignment (e.g. `a < (b := b + 1)) is not allowed in µCL, whereas it is allowed in C.•
µCL supports multiple assignment (e.g. `a, b := b, a') whereas C does not.•
In µCL, procedures can return more than one value; wheras in C only one value can be returned.•
The order of execution is strictly left-to-right in µCL, whereas in C it is frequently right-to-left or
undefined.

•

In µCL, the equality operator is `=' and not `==' as in C.•
The precedence of the bitwise AND (`&') and bitwise OR (`|') instructions is higher than the relational
operators (`=', `!=', `', and `>='). In C, the precedence is lower.

•

There are no auto-increment (`++') and auto-decrement (`--') operators in µCL.•
µCL has an extra bit selection operator called `@'.•
µCL does not implement records, so it does not implement either the C `.' or `->' operators.•
In µCL, the logical statements (e.g. `if', `while', etc.) and logical operators (e.g. `&&', `||', and `!') all
require an expression of type `bit'. No sloppiness with looking at the least significant bit of the
expression is permitted. You either use a relational operator (`=', `!=', `', and `>=") or a bit selector
operator (`@') that returns an expression of type `bit' to convert a byte expression into a bit one.

•

There is no arithmetic if (`E1 ? E2 : E3') in µCL yet.•

7.2 What is Precedence?

This section is for reference purposes for those people who are not familiar with the concept of operator
precedence.

In regular arithmetic expressions like `1 + 2 × 3 - 4 × 5 + 6', the `×' operator has a higher precedence than the
`+' and `-' operator. Thus, multiplication and division are performed before addition and subtraction. This can
be made more explicit by adding parenthesis as follows -- `1 + (2 × 3) - (4 × 5) + 6'. In many programming
languages, there are usually a couple of dozen operators and each of them have different precedences.

As usual, parenthesis are used to change the order operation execution. Thus, `(1 + 2) × (3 - 4) × (5 + 6)'
causes the addition and subtraction to occur before the multiplication.

The sections below list operators in µCL expressions from lowest procedence to highest prcedence. The
lowest precedence operators are performed after all higher precedence operators have been done.

7 Expressions 46

7.3 Assignment Operator (:=)

The assigment operator is:

`:='
Straight assignment (L := R)

µCL supports multiple assignment. In mulitple assignment, a list of expressions to the right are assigned to a
list of variables on the left. All of the expressions to the right are evaluated and stored in temporary varaibles
before any of the assignments take place. The example below will swap the contents of the `a' and `b'
variables:

 a, b := b, a

which is equivalent to:

 T1 := b
 T2 := a
 a := T1
 b := T2

where T1 and T2 are temporaries.

Another form of multiple assignment occurs when a procedure returns more than on value. An example
should help clarify this. Let us assume that the procedure plus_minus(a, b) returns a+b and a-b. This
procedure would be written as follows:

 procedure plus_minus
 argument a byte
 argument b byte
 returns byte byte

 return a + b, a - b

and we can invoke `plus_minus' as follows:

 a_plus_b, a_minus_b := plus_minus(a, b)

The first value returned from plus_minus is a+b and it is assigned to the variable a_plus_b. The second
value returned from plus_minus is a-b and it is assigned to the variable a_minus_b.

7.4 Comma Operator (,)

The comma operator , does not perform any computation per se. All it does is cause other expressions of
higher precedence to be executed in left-to-right order. It is used to separate variables and expressions in
multiple assignment statements (e.g. a, b := b, a) and it is used to separate the arguments passed to
procedures.

A lot of C programmers have programmed in C for years without realizing that in C most implementations
use right-to-left order of execution. The C language specification does not mandate either left-to-right or
right-to-left execution order. However, the first implementations of C pretty uniformly implemented
right-to-left execution in order to support variadic (i.e. many variables) functions like `printf'. Pretty much all

 The µCL Language Specification

7.3 Assignment Operator (:=) 47

subsequent C implementations after that have followed the same rule. The order of execution only crops up
when the expressions involve side effects. For example, in C:

 (void)printf("first:%d second:%d\n", get_byte(), get_byte())

does not do what most people think it does. The first call to `get_byte' is the right-most one followed by the
left-most one. Thus, in the example above, the first byte that is read is actually printed as the decimal number
next to `second' and vice verce. This is probably not what the C programmer had in mind.

In µCL, execution order is always left-to-right and there are no suprises like there are in C.

7.5 Conditional OR (||)

The expresion L || R returns 1 if either L or R evaluate to 1 It is a conditional OR because it will not execute
R if L returns a 1.

Consider the code fragment below:

 if (denominator = 0 || numerator/denominator = 0) {
 # ...
 }

In this example, it would erroneous to divide the numerator by zero, so we can check for zero beforehand and
only if it is non-zero does the division take place.

If it is desirable to always execute the left and the right side before computing the OR, the bitwise OR (|)
operator can be used.

7.6 Conditional AND (&&)

The expresson L && R returns 1 if both L and R evaluate to 1. It is a conditional AND because, it will not
bother to execute R if L returns a 0. Consider the code fragment below:

 if (denominator != 0 && numerator/denominator > 0) {
 # ...
 }

In this example, it would erroneous to divide the numerator by zero, so we can check for zero beforehand and
only if it is non-zero does the division take place.

If it is desirable to always execute the left and the right side before computing the AND, the bitwise AND
(`&') operator can be used.

The precedence of `&&' is higher than `||'. Thus,

 A && B || C && D

would be executed as

 (A && B) || (C && D)

 The µCL Language Specification

7.4 Comma Operator (,) 48

As usual, it never really hurts to add parentheses to improve readability.

7.7 Relational Operators and Bit Selection (<, =, >, <=, !=,
>=, @)

There is one bit selection operator and six relational operators:

L @ N
The N'th bit of L.

L < R
L less than R

L = R
L equal to R

L > R
L greater than R

L <= R
L less than or equal to R

L != R
L not equal to R

L >= R
L greater than or equal to R

The equality operators (= and !=) work for operands of type byte and bit and all the other opertators (<, >,
<=, >=, and @) only work for operands of type `byte'.

NOTE: bit equals and not-equals is not imlemented yet. The work around is quite ugly -- A && B || !A
&& !B for equality and A && !B || !A && B for inequality.

It is not permissible to stick an extra space between any of the two character relational operators (<=, !=, and
>=).

The bit selection operator is not present in C and is unique to µCL. A @ N is the N'th bit of A. Both A and N
must be of type byte. The result is of type bit. A@0 selects the least significant of A. B@7 selects the most
significant bit of B.

NOTE: Currently, the right operator of bit selection must be a constant. A reasonable work around would be
A & 1 << N != 0 which is grouped as (A & (1 << N)) != 0; unfortunately, 1<<N where N is not
a constant is also unimplemented. Sigh.

C programmers should note that the equality operator consists of a single = not the double == used in C.

In C, the char type usually stands for a byte. The ANSI-C standard allows char to be either signed or
unsigned. This ambiguity causes all sorts of grief when porting C code between C compilers. There is no
such ambiguity in µCL, the byte type is always represents non-negative numbers between 0 and 255
inclusive. Thus, in µCL, 128 is always greater 127 whereas in C (char)128 is sometimes less than
(char)127 and sometimes greater.

The precedence of the relation operators is greater than both conditional AND (&&) and conditional OR (||).
Thus, the following code fragment

 The µCL Language Specification

7.6 Conditional AND (&&) 49

 0c'a' <= c && c <= 0x'z'

is grouped as

 (0c'a' <= c) && (c <= 0x'z')

7.8 Addition and Subtraction (+, -)

The addition operator is + and the subtraction operator is -. These operators are only defined for expressions
of type byte. The order of execution is strictly left to right. Thus,

 a + b - c + d

is evaluated as:

 ((a + b) - c) + d

Currently, µCL does not implement 16-bit or 32-bit arithmetic. You can use the following work-around:

 variable a_lo byte
 variable a_hi byte
 variable b_lo byte
 variable b_hi byte
 variable c_lo byte
 variable c_hi byte

 c_hi := a_hi + b_hi
 c_lo := a_lo + b_lo
 if $c
 c_hi := c_hi + 1

The precedence of addition and subtraction is higher than the relational operators. Thus,

 a + b > 20

is grouped as

 (a + b) > 20

The more complicated expression

 a + b > 20 && c - d <= e + f

is grouped as

 ((a + b) > 20) && ((c - d) <= (e + f))

7.9 Multiplication, Division, and Modulo (*, /, and %)

NOTE: Currently, none of these operators are implemented for generated code. It is permissible to use them
in constant expressions though.

 The µCL Language Specification

7.7 Relational Operators and Bit Selection (<, =, >, <=, !=,>=, @) 50

The multiplication operator is *, the division operator is /, and the modulo operator is %. The modulo
operator returns the remainder of a division. These operators are only defined for expressions of type `byte'.
The order of execution is strictly left to right. Thus,

 a * b / c * d

is evaluated as:

 ((a * b) / c) * d

The precedence of multipliation and division is higher than addition and subtraction. Thus,

 a * b + c / d

is grouped as

 (a * b) + (c / d)

The more complicated expression

 a * b + c > 20 && d / e - f < 30

is grouped as

 (((a * b) + c) > 20) && (((d / e) - f) < 30)

7.10 Bitwise OR (|)

The expression A | B computes the bitwise OR of A and B. A and B must both be the same type. This
operation is defined for both type bit and byte. Execution order is strictly left to right.

NOTE: Currently, bitwise OR of type bit is not implemented. Usually, you can make do with the conditional
OR operator (||).

The precedence of bitwise OR is higher than multiplication, division, addition, subtraction and all relational
operators.

 a | 1 + b | 2 * c | 3

is grouped as

 (a | 1) + ((b | 2) * (c | 3))

The expression

 a | 1 >= b | 2

is grouped as

 (a | 1) >= (b | 2)

In C, this expression would group as

 The µCL Language Specification

7.9 Multiplication, Division, and Modulo (*, /, and %) 51

 (a | (1 >= b)) | 2

which is pretty counter-intuitive.

7.11 Bitwise AND (&)

The expression A & B computes the bitwise AND of A and B. A and B must both be the same type. This
operation is defined for both type bit and byte. Execution order is strictly left to right.

NOTE: Currently, bitwise AND of type bit is not implemented. Usually, you can make do with the
conditional AND operator (&&).

The precedence of bitwise AND is higher than bitwise OR, multiplication, division, addition, subtraction and
all relational operators.

 a & 1 | b & 2 | c & 4

is grouped as

 ((a & 1) | (b & 2)) | (c & 4)

The expression

 a & 0xf = 0xb

is grouped as

 (a & 0xf) = 0xb

In C, this expression would group as

 a & (0xf >= b)

which is pretty counter-intuitive.

7.12 Bitwise XOR (^)

The expression A ^ B computes the bitwise XOR (eXclusive OR) of A and B. A and B must both be the same
type. This operation is defined for both type bit and byte. Execution order is strictly left to right.

NOTE: Currently, bitwise XOR of type bit is not implemented.

Bitwise XOR is used to toggle bits. If you want to complement the third bit in a register, try the following:

 a := a ^ 4

The precedence of bitwise XOR is higher than bitwise AND, bitwise OR, multiplication, division, addition,
subtraction and all relational operators. This means you can twiddle bits, mask them off, the then assemble
them together without having to fight the operator precedence. For example,

 a ^ 9 & 0xf | 0xa0

 The µCL Language Specification

7.10 Bitwise OR (|) 52

is grouped as

 ((a ^ 9) & 0xf) | 0xa0

and toggles the first and forth bits of a, masks off the four high order bits, and sets the fifth and seventh bits.

7.13 Shift Operators (>>, <<)

The shift right operator is >> and the shift left operator is <<. Order of operation is strictly left to right. A <<
N causes A to be shifted left by N bits with 0 being shifted into the least significant bits. B >> N causes B to be
shifted right by N bits with 0 being shifted into the most significant bits. Both the left and right operands the
shift operators must be of type byte. Thus, A << 1 is equivalent to efficiently multiplying by 2 and A << 2
is equivalent to multiplying by 4. Similarly, B >> 1 is equivalent to dividing by 2 and B >> 2 is equivalent
to dividing by 4.

NOTE: Currently, the code for shifting by a non-constant expression has not been implemented.

The precedence of the shift operators is greater than the bitwise operators. Thus,

 a >> 4 | a << 4

is grouped as

 (a >> 4) | (a << 4)

Incidently, this piece of code results in a value where the nibbles of a have been exchanged.

7.14 Unary Operators (-, !, ~)

There are three unary operators:

- R
Minus R

~ R
Bitwise NOT of R

! R
Logical NOT of R

The minus (-) and bitwise NOT (~byte. The logical NOT operator (!) only works on a operand of type bit

The precedence of the unary operators is higher than all the arithmetic and bit twiddling operators. Thus,

 -a - b

is grouped as

 (-a) - b

and

 ~a & b

 The µCL Language Specification

7.12 Bitwise XOR (^) 53

is grouped as

 (~a) & b

NOTE: Currently, there is a bug in the expression parser such that a & ~b is not properly parsed.

NOTE: I've often thought that logical NOT (!) should have a precedence between && and bit selection (@).
Thus, !A@N would group as !(A@N) rather than (!A)@N. Similarly, I've often thought that that unary
minus should have a precedence right above multiplication (*).

7.15 Array Operator (...[...])

The array operator looks as follows:

L [R]

where L is an expression that evaluates to either a string or a byte array, and R is an expression that evaluates
to a byte. When the array operator occurs to the left of an assignment, a byte value is stored into the array;
otherwise, a byte value is fetched.

7.16 Dot Operator (L.size)

Currently, the dot operator has only one forms:

L.size
Fetch the size of L where L is an expression that evaluates to either a string or byte
array.

7.17 Procedure Invocation (P(...))

Procedure invocation is the act invoking a procedure using its return value (or values) in an expression. P()
invokes a procedure P with no arguments, P(A1) inovkes a preocedure with a single argument expression
A1, and P(A1, A2) invokes procedure P with argument expressions A1 and A2.

The arguments to the procedure are evaluated in strict left to right order.

It is an error to invoke a procedure that does not return any return value (i.e. returns_nothing) in an
expression.

It is legal to invoke a procedure in an expression that returns multiple values, provided the returned values are
directly passed on as arguments to another procedure invocation (or a multiple assignment.) For example,
assume that swap(a, b) returns b, a. Further assume that p3 is a procedure
that takes three arguments. p3(swap(a, b), c) is legal and equivalent to
p3(b, a, c).

The precedence of procedure invocation is higher than all other operators.

 The µCL Language Specification

7.14 Unary Operators (-, !, ~) 54

7.18 Debugger Support

The µCL compiler provides support for debugging programs. The basic concept is that the user identifies a
number of routines that are to be compiled with extra debugger support. A routine that has debugger support
compiled in can be stopped at the beginning of each statement in the procedure. In addition, the user can view
the call stack and all local and global variables for all procedures whenever the program is stopped at the
beginning of a statement.

Compiler support starts with the debug_base declaration. This specifies the base name of the libraries
needed. For example:

debug_base my_debugger

specifies the prefix for all debugger libraries, procedures, and variables will be my_debugger. If no
debug_base declaration is present, the default prefix is $debug. The debug_base declaration allows the
compiler to interface to a multitude of different debuggers. More importantly, the way that the debugger
communicates with the debugger library is strictly encapsulated by the debugger library. Thus, one library
may use a UART for communication and another may use some extra pins and bit bang the data back and
forth with the debugger. The compiler simply does not care how the debugger library implements the
debugger communication protocol.

The user specifies which procedures to generate debugging information for via the debug declaration. For
example,

debug main, my_proc1, my_proc2

will cause debugging code to be inserted into the code generated for the procedures main, my_proc1 and
my_proc2. Since there can be substantial code expansion, the user is encouraged to only generate debugger
support code for procedures that are likely to require breakpoints during a debugging session. If the user
discovers that they need to plant a breakpoint on a procedure that is not listed in the debug declaration, the
debug declaration is changed, the code is recompiled, reinstalled, and debugging resumes.

In general, the debugger library is split into 4 library files called prefix0.ucl through prefix3.ucl. The
digit 0-3 specifies which code bank the debugger library file lives in. The bulk of the debugger library resides
in prefix0.ucl which is always loaded. The other debugger files are loaded only as needed.

There are a total of 13 entry points defined by the debugger library files. There is one initialization entry
point, and 3 three other entry points that are defined for each of the possible 4 code banks. Thus, 1+3×4=13.
These entry points are:

prefix_initialize
The debugger library entry point that is called from main before any other calls into
the debugger library.

prefixN_enter
The debugger library entry point for when a procedure is first called.

prefixN_breakpoint
The debugger library entry point for when an active breakpoint is encountered.

prefixN_exit
The debugger library entry point for when a procedure returns.

 The µCL Language Specification

7.18 Debugger Support 55

The prefix is the prefix specified by the debug_base declaration. The prefixN is the same as prefix, but with
the code bank number appended onto the end. The code bank digit specifies which code bank the entry point
lives in. The reason for providing a separate entry point for each code bank is to reduce the amount of code
bank swapping code that is generated for each breakpoint. For example, assume that the following code
fragment is having debug code generated:

 origin 0
 data_bank 0
 procedure main
 arguments_none
 returns_nothing

 call bank1()
 call bank2()
 call bank3()

will have calls to the following debugger library entry points:

call prefix_initialize()
call prefix0_enter()

call prefix0_breakpoint()
call bank1()

call prefix1_breakpoint()
call bank2()

call prefix2_breakpoint()
call bank3()
call prefix0_exit()

Notice that the breakpoint debugger library entries are always use the most recent code bank rather than the
"upcoming" code bank. The entry and exit debugger library entries are always using the procedure's home
code bank.

The prefix0.ucl debugger library file must define a single global shared variable:

prefix_current
The current number of the procedure being debugged.

Each procedure in the debug declaration is given a number between 0 and 254. The number 255 is what
prefix_current is initialized to by prefix_initialize.

For each procedure listed in the debug declaration, the compiler allocates two variables:

proc_name_caller
This variable contains the procedure number of the procedure that is calling this
procedure.

proc_name_breakpoint
This variable contains the breakpoint number of the current statement being executed.

 The µCL Language Specification

7.18 Debugger Support 56

where proc_name is the procedure name. Upon entry into the procedure, the compiler generates the following
code squence:

proc_name_caller := prefix_current
prefix_current := proc_name_number
call prefixN_enter()

where prefix_current is a global shared variable (i.e. a variable that is accessible form on data banks at the
same time.)

Upon exit from a procedure the following code is generated:

prefix_current := proc_name_caller

Using the code generated for procedure entry and exit, the debugger can chain back through prefix_current
to generate the call stack. It reads the value of "current", looks up the assocaited "caller" repeatable until it
gets a "caller" of 255, at which point the call stack is at the end. For each procedure in the call stack, the
debugger must fetch the value of the proc_name_caller variable.

For each statement, the compiler generates the following code:

proc_name_breakpoint := N
if breakpointN

call prefixN_breakpoint()

A single procedure can have up to 256 statement breakpoints. The compiler allocates a single bit for each
breakpoint. The compiler does not generate code to initialize these bits -- it is the responsibility of the
debugger initialize all of the breakpoint bits.

Finally, the compiler outputs a ton of information in a base_name.info file. This file provides the procedure
names, variable names and types, and the locations of all breakpoint bits. A debugger can read the .info file
and figure everything out (heh-heh.)

Next, some example code fragrments are provided to give some idea of how to write some debugger code.
Here is prefix0.ucl:

 ucl 2.0
 # Copyright (c) year by your name
 # All rights reserved.

 # This portion of the debug library lives in code
 # bank 0.

 library_code_bank 0
 data_bank 0

 shared prefix_current byte # Currently debugged proc.
 shared prefix_status byte # Current $status reg.
 global prefix_why # Why we paused

 constant prefix_debug_address = 0
 constant prefix_why_initialize = 0
 constant prefix_why_enter = 1
 constant prefix_why_breakpoint = 2

 The µCL Language Specification

7.18 Debugger Support 57

 constant prefix_why_exit = 3

 procedure prefix_initialize
 arguments_none
 returns_nothing

 # This procedure is called before anything else.

prefix_current := 255
prefix_why := prefix_why_initialize
 assemble
 goto prefix_debug_loop

 procedure prefix0_enter
 arguments_none
 returns_nothing
 return_suppress

 # This procedure is called when a procedure
 # is entered. We know we are in code bank 0,
 # but we do not know our data bank:

prefix_status := $status
 assemble
 # Goto the shared routine:
 goto prefix_enter

 # The code for prefix0_breakpoint and
 # prefix0_exit is the same except that
 # the goto goes to prefix_breakpoint
 # and prefix_exit respectively.

 procedure prefix_enter
 arguments_none
 returns_nothing
 return_suppress

 # This procedure is called when a procedure is
 # entered.

 # Force into code bank 0:
 $status := 0

 # See whether we need to do anything:
 if prefix_enter_stop

prefix_why := prefix_why_enter
 assemble
 goto prefix_debug_loop

 # Otherwise, we can just return without doing anything:
 assemble
 goto prefix_done

 procedure prefix_exit
 arguments_none
 returns_nothing
 return_suppress

 # This procedure is called when a procedure is
 # exited. At this point we know tha the code
 # bank is 0 and the data bank is 0.

 The µCL Language Specification

7.18 Debugger Support 58

 $status := 0
 if prefix_exit_stop

prefix_why := prefix_why_exit
 assemble
 goto prefix_debug_loop

 # Otherwise, we can just return without doing anything:
 assemble
 goto prefix_done

 procedure prefix_breakpoint
 arguments_none
 returns_nothing
 return_suppress

 # This procedure is called when a procedure
 # breakpoint is encounter. At this point we
 # know tha the code bank is 0 and the data
 # bank is 0.

prefix_why := prefix_why_breakpoint

 # Run into the next procedure:

 procedure prefix_debug_loop
 arguments_none
 returns_nothing
 return_suppress

 # This procedure is called to get some attention
 # from the debugger. At this point we know that
 # both the code bank and data bank are 0.
 # The prefix_why variable contains a code
 # explains why the debugger attention is needed.

 local done bit
 local echo_eat byte
 local send bit
 local send_value byte
 local state byte
 local receive bit
 local receive_value byte

 # Get attention of debugger:

 state := 0
 done := $false
 while !done
 switch state
 case 0
 # Send the attention address byte:
 $tx9d := $true
 send := $true
 send_value := prefix_debug_address
 state := 1
 case 1
 # Send the "why" byte:
 $tx9d := $false
 send := $true
 send_value := prefix_why

 The µCL Language Specification

7.18 Debugger Support 59

 receive := $true
 state := 2
 case 2
 # We've got a command:
 state := receive_value

 #...
 case last
 done := $true

 # Send a byte to the debugger:
 if send
 while !$txif
 do_nothing
 $txreg := send_value
 echo_eat := $true
 send := $false

 # Receive a byte:
 while echo_eat || receive
 while !$rcif
 do_nothing
 receive_value := $rcreg
 if $oerr
 $cren := $false
 if $ferr
 $cren := $false
 $cren := $true
 if echo_eat
 $echo_eat := false
 else_if receive
 $receive := false

 # Run into the next procedure:

 procedure prefix_done
 arguments_none
 returns_nothing

 assemble
 # Restore status:
 movf prefix_status,w
 movwf $status
 # Implicit Return instruction executed next will
 # return to the proper code bank.

The code for a debugger entry point in one of the other code banks looks as follows:

 procedure prefix1_enter
 arguments_none
 returns_nothing
 return_suppress

 # This procedure is called when a procedure
 # is entered. We know we are in code bank 0,
 # but we do not know our data bank:

 # Save the status:
prefix_status := $status
 # Force into code bank 0:

 The µCL Language Specification

7.18 Debugger Support 60

 $pclath := 0
 assemble
 # Goto the shared routine:
 goto prefix_enter

Copyright © 1999-2007 by Wayne C. Gramlich. All rights reserved.

 The µCL Language Specification

7.18 Debugger Support 61

	Table of Contents
	1 Introduction
	2 Lexical Considerations
	2.1 Character Sets and Indentation
	2.2 Symbols, Constants, and Punctuation
	2.2.1 Symbols
	2.2.2 Constants
	2.2.3 Punctuation

	2.3 Comments
	2.4 Continuation Lines

	3 Types
	3.1 Bit
	3.2 Unsigned Integer
	3.3 Signed Integer
	3.4 Floating Point
	3.5 String
	3.6 Array

	4 Declarations
	4.1 bind Declaration
	4.1.1 Simple bind Declaration
	4.1.2 Array bind Declaration
	4.1.3 Bit bind Declaration

	4.2 code_bank Declaration
	4.3 configure Declaration
	4.4 constant Declaration
	4.5 data_bank Declaration
	4.6 debug Declaration
	4.7 icd2 Declaration
	4.8 icd2_configure Declaration
	4.9 global Declaration
	4.9.1 Simple global Declaration
	4.9.2 Array global Declaration

	4.10 library Declaration
	4.11 library_bank Declaration
	4.12 origin Declaration
	4.13 package Declaration
	4.13.1 pin Declaration
	4.13.2 package Example

	4.14 processor Declaration
	4.14.1 code_bank Declaration
	4.14.2 configure_address Declaration
	4.14.3 configure_fill Declaration
	4.14.4 configure_option Declaration
	4.14.5 data_bank Declaration
	4.14.6 global_region Declaration
	4.14.7 icd2_global_region Declaration
	4.14.8 icd2_shared_region Declaration
	4.14.9 interrupts_possible Declaration
	4.14.10 osccal_at_address Declaration
	4.14.11 osccal_in_w Declaration
	4.14.12 osccal_register_symbol Declaration
	4.14.13 packages Declaration
	4.14.14 pin Declaration
	4.14.15 shared_region Declaration
	4.14.16 processor Example

	4.15 register Declaration
	4.16 register_array Declaration
	4.17 string Declaration
	4.18 ucl Declaration

	5 procedure Declaration
	5.1 argument Declaration
	5.2 arguments_none Declaration
	5.3 exact_delay Declartion
	5.4 local Declaration
	5.4.1 Simple local Declaration
	5.4.2 Array local Declaration

	5.5 returns Statement
	5.6 returns_nothing Declaration

	6 Statements
	6.1 assemble Statement
	6.2 Assignment Statement
	6.2.1 Simple Assignment Statement
	6.2.2 Multiple Assignment Statement

	6.3 call Statement
	6.4 delay Statement
	6.5 delay_set Statement
	6.6 do_nothing Statement
	6.7 if Statement
	6.8 loop_exactly Statement
	6.9 loop_forever Statement
	6.10 return Statement
	6.11 switch Statement
	6.12 watch_dog_reset Statement
	6.13 while Statement

	7 Expressions
	7.1 Differences from C Expressions
	7.2 What is Precedence?
	7.3 Assignment Operator (:=)
	7.4 Comma Operator (,)
	7.5 Conditional OR (||)
	7.6 Conditional AND (&&)
	7.7 Relational Operators and Bit Selection (<, =, >, <=, !=, >=, @)
	7.8 Addition and Subtraction (+, -)
	7.9 Multiplication, Division, and Modulo (*, /, and %)
	7.10 Bitwise OR (|)
	7.11 Bitwise AND (&)
	7.12 Bitwise XOR (^)
	7.13 Shift Operators (>>, <<)
	7.14 Unary Operators (-, !, ~)
	7.15 Array Operator (...[...])
	7.16 Dot Operator (L.size)
	7.17 Procedure Invocation (P(...))
	7.18 Debugger Support

