
This is tutorial for µUL. It is currently work in progress. It is also available in PDF format.

The µCL Tutorial

Table of Contents

Table of Contents•
1. Introduction•
2 Downloading the Software•
3 IDE Overview•
4 Compiling Programs•
5 Example1 Walk Through•
6 Microcontroller Hookup•
7 Debugging•
8 Numbers, Characters, and Strings•
9 Constants and Expressions•
10 Variables and Assignments•
11 Procedures•
12 About Indentation•
13 Simple Statements•
14 Iteration Statements•
15 Code and Data Banks•
16 About Types•
17 More About Expressions•
18 Libraries•
19 Pins•
20 Embedded Assembly Code•
21 Controlled_Delays•
22 Interrupts•

1. Introduction

µCL is an acronym for Microcontroller Language. It is a high level language designed specifically for
programming 8−bit microcontrollers such as the PICmicro® (Peripheral Interface Controller) microcontrollers
from MicroChip®. The motivation for creating µCL was born of a need for a powerful yet easy to use
programming development tool to use with RoboBRiX a modular system for building robots.

The overall strategy for this tutorial is "hands on". The goal is actually get you to compile and execute the
code on actual hardware. Thus, many of the early sections in this tutorial focus on how to use the µCL IDE
(Integrated Development Environment), while later sections focus in of various aspects of the µCL language
itself.

Without any further discussion, let's get going!

2. Downloading the Software

In order to download the software:

 The µCL Tutorial

 The µCL Tutorial 1

Read and agree to the µCL license.1.
Go to the Downloads Page and download the appropriate version of the software.2.

3. IDE Overview

The µCL IDE (Integrated Development Environment) provides a graphical user interface to the µCL compiler
and provides download and debugging facilities as well. The rest of this section provides a brief overview of
the main IDE window without going into much detail. The details are discussed in sections that follow this
one.

To start the µCL IDE on Linux, type the following to your favorite shell:

 uclide

On a Microsoft® operating system, double click on the µCL IDE icon to get it started

Once the µCL IDE starts up, you will be presented with a main window that looks as follows:

The main window consists of three rows of buttons followed by a scrollable program editing window.

The top row of "buttons" is a menu bar. Each menu bar button will pop up a menu of actions to select from.
Briefly, the menu buttons are as listed below:

[File]
Allows for the creating, loading, and saving of files.

[Edit]

 The µCL Tutorial

 3. IDE Overview 2

Provides various editing options, such cut and paste. (Not available in version 0.90.)
[Buffer]

Provides an easy means of switching between loaded file buffers.
[Search]

Provides search and replace facilities. (Not available in version 0.90.)
[Options]

This is were the property sheet is kept.
[Debug]

Currently, this allows you to bring up the debug terminal without having to click on the [Download]
button first.

[View]
This currently allows you to change the font size.

[Help]
Currently, this just pops up the current version number.

The second row of buttons are for very common operations in the IDE, such as compiling, downloading, and
debugging operations. These operations are listed below:

[Save]
Save the currently modified buffers back to the disk.

[Edit]
Leave debug mode and return to edit mode.

[Compile]
Compile the first buffer.

[Download]
Download the the compiled program to the microcontroller.

[Run]
Run the downloaded program.

[Step]
Single step the program. Follow any procedure calls

[Next]
Single step program. Do not follow any procedure calls.

[Continue]
Continue until the next breakpoint.

[Reset]
Reset the microcontroller.

The third row is for dealing with compiler errors.

[Next]
Make the next compiler error visible.

[Prev]
Make the previous compiler error visible.

These two buttons are followed by a message window where the IDE shows short information messages.

The rest of the main IDE window consists of a scroll bar, and a text window for viewing program source. The
scroll bar is deliberately placed on the left because most editing takes place on the left side of the editing
window.

 The µCL Tutorial

 3. IDE Overview 3

4. Compiling Programs

Before you can compile a file, you need to load it into the IDE. This is accomplished by selecting the
[File]=>[Open] menu option. This brings up a file chooser window as follows:

This window allows you to browse around the computer system looking for files to load. The µCL compiler is
really picky in that it refuses to compile anything that does not end with a suffix of .ucl. For this example,
we will assume that you select the file example1.ucl. If you do, the code panel will fill up with the code
as follows:

 The µCL Tutorial

 4. Compiling Programs 4

Please take a moment to click on the [Buffer] menu button. This button displays list of loaded buffers in the
µCL IDE. Since we have loaded only one file into a buffer, only the single buffer called example1 is
available.

The µCL stores files in internal memory buffers. You can make as many changes to the memory buffers as
you want, but nothing becomes permanent until you explicitly save the files to disk (e.g. by clicking on the
[Save] button.) By the way, if you try and quit without saving to disk, the µCL IDE tries to warn you with a
pop up warning message.

In order to compile the file we just loaded, just click on the [Compile] button. After a brief pause a status
message should appear to the right of the [Prev] button that says "No Errors". This is shown below:

 The µCL Tutorial

 4. Compiling Programs 5

Now take another moment to go back to the [Buffer] menu button and look at it now. You should see three
buffers called example1, $pic16f876, and $debug0. As a side effect of compiling, the compiler
notified the µCL IDE that two additional files were processed when compiling the example1 program. The
file ode> contains a bunch of definitions for the PIC16F876 microcontroller.
The file $debug0.ucl is the small chunk of code that is added to the
example1 to enable debugging.

Please select [Buffer]=>[$pic16f876] to switch switch over to $pic16f876 buffer. Your IDE main window
should look as follows:

 The µCL Tutorial

 4. Compiling Programs 6

Using the [Buffer] menu button, please return to the example1 buffer.

Now we are going to edit the example1 buffer to introduce three errors. This is done by adding some
extraneous characters such as "XXX" to each of the following lines of code: "origin 8", "debug main",
and "call character_put('H')". These modifications are are shown below:

 The µCL Tutorial

 4. Compiling Programs 7

Now when you click on the [Compile] button you will get 3 errors and an IDE main window that looks as
follows:

 The µCL Tutorial

 4. Compiling Programs 8

The message area to the right of the [Prev] buttons says "3 Errors". Before each line there is a an error
message of the form:

<number>: message

where

number
is the line number the error occurs on, and

message
is the error message.

Each error message also has a vertical bar "|" tries to point at where on the line the error was first detected.
The is vertical bar is spliced into the error message irrespective of whether it splits a word. For example, for
the second error message the vertical bar wound up splitting the word No into N|o.

The [Next] and [Prev] buttons are used to navigate around between error messages. Clicking on the the [Next]
button will scroll to next error message and clicking on the [Prev] button will scroll to the previous error
message. Unfortunately, all of the errors in this example are visible on one page, so clicking on the [Next] and
[Prev] buttons do not actually cause any scrolling to occur.

 The µCL Tutorial

 4. Compiling Programs 9

If there are multiple errors in multiple buffers, clicking on the [Next] and [Prev] buttons will automatically
change buffers and scroll to the appropriate location. This is really useful for programs that are broken up into
multiple files.

You are now free to remove the XXX from the three statements. Please leave the red error messages alone. The
µCL IDE will remove the error messages before sending back to the compiler.

When you are all done, click on the [File]=>[Quit] menu button to exit the µCL IDE. There is a chance that it
will pop up the warning message asking whether to save the modified buffers. In this case, please click [No].

That more or less covers the basics of using the µCL IDE to compile µCL programs.

5. Example1 Walk Through

The first program we will download and run is called Example1. It will print the message as a verification
that your hardware is hooked up correctly and that your software is properly installed.

The Example1 program is listed below:

 ucl 1.0
 # Copyright 2004 by Wayne C. Gramlich.
 # All rights reserved.

 library $pic16f876

 origin 8

 debug main

 procedure main
 arguments_none
 returns_nothing

 call character_put('H')
 call character_put('i')
 call character_put('!')
 call character_put('\cr\')
 call character_put('\lf\')
 loop_forever
 do_nothing

 procedure character_put
 argument character byte
 returns_nothing

 # This procedure will output {character} to the UART.

 while !$txif
 do_nothing
 $txreg := character

That's it! Now we'll go through a line by line description of what each line means.

The first line of every µCL program is always the following:

 The µCL Tutorial

 5. Example1 Walk Through 10

 ucl 1.0

This declaration tells the µCL compiler that this is, in fact, an µCL program, and that it conforms to version
1.0 of the µCL language specification. The first digit corresponds to the major version number (i.e. "1") and
the second digit corresponds to the minor version number (i.e. "0".) The minor version number is incremented
whenever new features are added that do not break compatibility with prior programs. The major version
number is only incremented when an incompatible change is made to the language specification.

The next two lines,

 # Copyright © 2004 by Wayne C. Gramlich.
 # All rights reserved.

are called comments. Comments are completely ignored by the µCL compiler but provide the user with useful
information about the program in the form of notations within the program itself. A comment always begins
with the sharp (i.e. '#') character and continues to the end of line.

µCL uses th ISO (International Standards Organization) Latin−15 8−bit character set. The copyright (i.e. '©')
character is perfectly legal and acceptable character in a comment or string.

In the example, there is a blank line between the second comment and the next program line. Just like
comments, blank lines are ignored by the µCL compiler.

The next line is,

 library $pic16f876

The library declaration instructs the µCL compiler to go to a particular file to fetch additional needed
information such as register definitions and reusable code. The dollar sign (i.e. '$'), appearing as the first
character of the library name specifies that the designated library file is to be found in the system library
directory. The $pic16f876 library contains declarations for the MicroChip PIC16F876 microcontroller.

The next line is:

 origin 8

and specifies that the next procedure is to be started at code address 8. This happens to be the address at which
code is executed when the "X" command is typed into the RoboBRiX PICBrain11 boot loader.

The next line is:

 debug main

which informs the compiler to generate debugging code for the procedure named main.

The next line is:

 procedure main

 The µCL Tutorial

 5. Example1 Walk Through 11

and declares that we are starting to define a procedure named main. A procedure accomplishes a specific
sub−task of the whole program and it can be executed one or more times. A program basically consists of one
or more procedures. The main procedure is special because it is always the first procedure that is called in an
µCL program. There must always be a procedure named main or the compiler will not know where to start
program execution. The main procedure does not have to occur first in the program, although it is quite
common for it to be first.

The next line is,

 arguments_none

and it tell the µCL compiler that the main procedure is to be invoked without any additional arguments. Note
that it is indented by four spaces from the left margin. In µCL, indentation is required! The program will
produce errors if the declarations and statements for the procedure are not properly indented.

The next line is,

 returns_nothing

and it specifies that the main procedure will not be returning any values.

This declaration is followed by a blank line that is ignored by the µCL compiler.

The next five lines are

 call character_put('H')
 call character_put('i')
 call character_put('!')
 call character_put('\cr\')
 call character_put('\lf\')

which consist of five calls to the character_put procedure to output the messages "Hi!" followed by a
carriage return and line feed. The details of the '\cr\' and '\lf\' are discussed in a section further
below.

The next two lines are:

 loop_forever
 do_nothing

These two statements cause the microcontroller to go into an infinite loop doing nothing.

The next chunk of code is as follows:

 procedure character_put
 argument character byte
 returns_nothing

 The µCL Tutorial

 5. Example1 Walk Through 12

 # This procedure will output {character} to the UART.

 while !$txif
 do_nothing
 $txreg := character

This code defines a new procedure called character_put. It takes a single argument called character
which is of type byte. The while statement basically that the processor is to wait until the $txif bit
becomes 1. The $txif bit is defined in the $pic16f876 library and corresponds to the UART (Universal
Asynchronous Receiver and Transmitter) transmit interrupt flag. When the transmit interrupt flag is 1, it is
acceptable to send another character. The final line causes a character to be sent by stuffing character into
$txreg.

6. Microcontroller Hookup

Hookup up a microcontroller to your system is the next task. There are roughly three ways to do it:

Buy and build a PICBrain11 RoboBRiX that comes with a PIC16F876x pre programmed with the
correct boot loader. (Disclaimer: I get a royalty each for each PICBrain11 sold.)

•

Hook a PIC16F87x up to a RS−232 level converter chip like a Maxim MX232 chip. Download a boot
loader into the PIC16F87x.

•

Hook a PIC16F87x up to a transistor based level converter. Again, download a boot loader into the
PIC16F87x.

•

Of the three, the first is the easiest. If you already own a PIC programmer that can program a PIC16F87x, then
you might be able to save some money by building your own circuit from scratch.

{Put schematics here.}

7. Debugging

The µCL programming compiler provides debugger support for the µCL IDE. The µCL debugger allows the
user to set and clear breakpoints, examine and modify variable contents, and single step program execution.
(Variable modification does not work for version 0.90.)

Some microcontroller applications can not use the debugger facility because they have hard real−time
constraints that would not be met if program execution were to stopat a breakpoint. You will have to decide
whether your application can tolerate being stopped at a debugger breakpoint or not. If not, you are more or
less on your own and the µCL IDE debugger will not be of much use; otherwise, please continue reading.

Using the debug declaration, you can specify a list of procedures for which you want the compiler to
produce extra debugger support code. For each procedure with debugging code enabled, the following
additional overhead is incurred:

there are 2 bytes of data space required for debugger use,•
each procedure will have 4 instructions overhead on entry,•
each procedure statement will have 4 instructions of overhead,•
each return will have 2 instructions of overhead.•

 The µCL Tutorial

 6. Microcontroller Hookup 13

Given how good the µCL compiler code generator is, the 4 instructions of overhead per statement will
typically double the procedure size and cut its execution speed in half.

The debug declaration has the following form:

 debug procedure_name, ...

where

procedure_name is a procedure name.

There can be more than one procedure name separated by commas.

It is time fire up the µCL IDE debugger. Please perform the following steps:

start the µCL IDE,1.
plug your hardware into the serial port,2.
turn on the microcontroller power, and3.
click on [Debugger]=>[Debugger...] to bring up the debugger terminal window4.

The debugger terminal window looks as follows:

The debugger window consists of a text window with a scroll bar on the left, a stack row, and a command line
row.

 The µCL Tutorial

 6. Microcontroller Hookup 14

The "PICBrain11−C" is the boot loader announce string and its presence in the debug terminal indicates
that the boot loader inside the microcontroller is running and in control. The ">" is the boot loader command
prompt character. If your system does not contain the announce string and command prompt, you need to go
back to the previous section and debug your hardware.

You can send commands to the boot load loader by typing them into the command line entry at the bottom of
the debugger window. For example, typing "V" into the bottom window followed by depressing the [Enter]
key will use the boot loader to print out its version number (currently "1.0".) Try it. Similarly, typing "P00"
will cause the first page of code to be displayed in hexadecimal. Again, please try it.

By the way, the [!] button in the lower left corner is the repeat button. If you type a command into the entry
field and click on [!] it will send the command without deleting it from the entry field. This allows you to send
the same command multiple times.

Now that we have verified that the boot loader is working, it is time to compile up a program and run the
debugger on it. We are going to use the example2.ucl program to demonstrate the debugger. Please do the
following:

Click on [File]=>[Open...] to bring up a file loader pop−up,1.
select example2.ucl,2.
click on the [Compile] button.3.

This program should compile without errors.

Now click on the [Download] button. This causes the hex file associated with example2.ucl to be
downloaded into the microcontroller. You should see the hex file scrolling by. There should be a ">" prompt
with each line. The debugger window should look sort like the following:

 The µCL Tutorial

 6. Microcontroller Hookup 15

Each line of the hex file should be preceded by a ">" prompt. The last line of the hex file is always
":00000001FF". The boot loader prints out what its error condition is as "Err=00", which signifies that
now errors occurred. If your debug window does not look as described, please click on the [Reset] button and
then the [Download] button again.

Moving our attention back to the main µCL IDE window, it should look something like this:

 The µCL Tutorial

 6. Microcontroller Hookup 16

The program as been indented by 8 spaces. Each statement that the debugger can stop at is marked with a
green "O".

 The µCL Tutorial

 6. Microcontroller Hookup 17

There are five commonly used debugger buttons and they are listed below:

[Run]
Starts program execution.

[Step]
Causes the program to single step to the next breakpointable statement irrespective of what procedure
it occurs in.

[Next]
Causes the program to single step to the next breakpointable statement within the same procedure.

[Continue]
Causes program execution to continue until the next breakpoint is encountered.

[Reset]
Resets the microcontroller and causes the boot loader to be restarted.

A breakpoint is an instruction to the debugger to stop program execution when a particular statement is
encountered. To enable a breakpoint, you click on one of the green "O" characters and it will turn into a red
"X" character. When program execution reaches one of the red X's, the debugger will suspend execution and
allow you to examine various program variables. To disable a breakpoint, click on the red "X" and it will turn
back into a green "O" again. The screen below has a few breakpoints set:

 The µCL Tutorial

 6. Microcontroller Hookup 18

Once you have set your breakpoints, you can start the program by clicking on the [Run] button. The only
thing that happens is that the [Step], [Next], and [Continue] buttons will become enabled and the [Run] button

 The µCL Tutorial

 6. Microcontroller Hookup 19

will become disabled. The program is now stopped at the very beginning of the main procedure before it has
even executed any initialization code.

{Realistically, I need to add some visualization of this state. Probably some sort of special arrow that points at
the main procedure declarations.}

Now you are free to click on [Step], [Next], or [Continue] buttons. For now, click on the [Step] button and
you will see a screen that looks as follows:

 The µCL Tutorial

 6. Microcontroller Hookup 20

There is a program counter arrow that consists of "==>" that points to the first statement in the program.
Every time the program is stopped at a statement, the program counter arrow will point to the statement. In

 The µCL Tutorial

 6. Microcontroller Hookup 21

addition, please look at the Stack line in the debugger terminal; it should look as follows:

The stack indicates that the procedure is stopped at line 17 (in the file) in the procedure main.

{I think the stack should be moved to the main window.}

If you click on the [Step] button a few times you will see it the program counter arrow advance through the
program one line at a time. When you get to the first call hi() statement and click on [Step], it will
transfer control to the first statement in the hi procedure. The stack is now two levels deep and looks as
follows:

This stack shows that the program is stopped at line 33 (in the file) in the hi procedure and was called from
the statement at line 21 (in the file) in the main procedure.

As programs get bigger, you can click on the stack buttons to scroll to the location listed on the button. In this
particular example, the the locations are so close together that typically no scrolling is needed.

If you look back at the source window, it looks as follows:

 The µCL Tutorial

 6. Microcontroller Hookup 22

The current program counter arrow is pointing to the first statement in the hi procedure. In addition, there is a
second stack pointer, "=1>" that points to the location in the stack where the call originated from. The digit

 The µCL Tutorial

 6. Microcontroller Hookup 23

specifies where in the stack the call came from.

If you keep clicking on the [Step] button, you will eventually reach the final loop_forever loop where the
program counter error will switch between the two do_nothing statements. A do_nothing statement
does not do anything except provide a location for the debugger to stop at.

Now restart the program by clicking on the [Reset] button followed by the [Run] button. First, notice that the
stack is cleared.

This time, keep clicking on the [Next] button. The [Next] button differs from the [Step] button in that it does
not follow the flow of execution into procedure calls. So, when the program counter arrow gets to the first
call hi() statement and you click on [Next], the program counter simply advances to the next statement
in the main procedure.

Again, restart the program by clicking on [Reset] followed by clicking on [Run]. Clicking on [Reset] does not
clear any of the breakpoints that you manually set. Now, when you click on the [Continue] button, the
program resumes execution until one of the breakpoints marked with a red "X".

It is possible to intermix the usage of the [Step], [Next], and [Continue] buttons. For fun, click on [Reset] and
[Run] again and now intermix using the three buttons.

Sometimes a program "gets away" and does not run into any breakpoints. When this happens the three [Step],
[Next], and continue buttons will remain disabled. Alas, there is no way to force the current program to stop at
the next breakpoint. The only way to recover from this situation is to click on [Reset] and [Run] to restart the
program.

So far, we have only focused on following the flow of program execution. It is also useful to be able to see the
values of variables change as execution progresses.

The next program to load is called example3.ucl. Once you have compiled the program and downloaded
it, please set a breakpoint on the last statement. The main window should look as follows:

 The µCL Tutorial

 6. Microcontroller Hookup 24

Each local variable has its current value represented in blue next to the variable declaration. In this particular
example, the variable is represented with two question marks ("??") to indicate that the debugger has not yet

 The µCL Tutorial

 6. Microcontroller Hookup 25

accessed microcontroller memory.

Please click on [Run] followed by [Step]. When you do this, all of the "??" values are replaced by the values
that happened to be in memory when the microcontroller was powered up. The window below gives an
example of what it would look like:

 The µCL Tutorial

 6. Microcontroller Hookup 26

The variables are all represented as 2 hexadecimal digit numbers (i.e. 8−bits of data.) Please note that your
microcontroller will almost certainly come up with some different values.

 The µCL Tutorial

 6. Microcontroller Hookup 27

Lastly, please click on the [Continue] button to catch the program on each iteration through the loop. The
window below shows the program values when the counter has a value of 33 hexadecimal:

 The µCL Tutorial

 6. Microcontroller Hookup 28

Being able to follow program flow and track variable values is a very powerful set of features for debugging
programs. Future versions of the debugger (hopefully version 0.91) will also provide the ability to change
values as well.

The only thing left to cover about the µCL debugger is to explain what your program needs to do in order
share the UART on the microcontroller with the µCL IDE debugger. The baud rate for the on−board UART is
set to 9200 baud by the boot loaded that has already been programmed into the microcontroller program
memory. After the µCL debugger starts program execution, the program and IDE debugger stub must not get
in the way of one another. Basically, your program is allowed to send back character codes in the range 0
through 254 inclusive. Code 255 is reserved exclusively for the µCL IDE debugger. When the µCL debugger
sees code 255 it takes over control of the UART for the debugger. Do not not change the baud rate and do not
send code 255 are all you have to remember.

8. Numbers, Characters, and Strings

Numbers in µCL are represented as either decimal numbers or hexadecimal numbers. (Note to C
programmers: no octal numbers!) A decimal number is just a sequence of decimal digits ('0'−'9'). A
hexadecimal number is a sequence of hexadecimal digits ('0'−'9', 'A'−'F', 'a'−'f') preceded by the prefix '0x'.

Some example numbers are:

Decimal Hexadecimal Decimal Hexadecimal

0 0x0 255 0xff

1 0x1 256 0x100

9 0x9 65535 0xffff

10 0xa 16777215 0xffffff

15 0xf 16777216 0x1000000

16 0x10 42949672950xffffffff

Note that 32−bit numbers can be represented (i.e. 232−1.) The numbers are unceremoniously truncated to fit
within the precision of any variable.

A string is a sequence of zero, one or more Latin−15 characters enclosed in double quotes (i.e. "..."). A
character is exactly one Latin−15 character enclosed in single quotes (i.e. 'x'). Non−printing characters are
represented using an escape mechanism using pairs of back slash characters ('\'). The non−printing characters
are represented as either numbers or symbols. The allowed symbols are:

Symbol Value Symbol Value Symbol Value Symbol Value Symbol Value

nul 0 ht 9 dc2 18 esc 27 t 9

soh 1 lf 10 dc3 19 fs 28 n 10

stx 2 vt 11 dc4 20 gs 29 v 11

etx 3 ff 12 nak 21 rs 30 f 12

eot 4 cr 13 syn 22 us 31 r 13

enq 5 so 14 etb 23 sp 32 tab 8

ack 6 si 15 can 24 del 127 bsl 92

bel 7 dle 16 em 25 a 7 dq 34

 The µCL Tutorial

 8. Numbers, Characters, and Strings 29

bs 8 dc1 17 sub 26 b 8 sq 39

Some string examples are shown below:

 "" # Empty string
 "a" # String containing single letter "a"
 " " # String containing single space
 "Hello, World!\n\" # "Hello, World" followed by line feed
 "No.\tab\Desc.\lf\" # String with tab and line feed in it
 "\bsl\" # String containing single backslash
 "'" # String containing single quote.
 "\sq\" # String containing single quote
 "\dq\" # String containing double quote
 "Español" # String containing Latin−9 "ñ"
 "\dq\Hi\dq\" # String encloses "Hi" in double quotes
 "Done!\10,13\" # String followed by CR and LF
 "Done!\cr,lf\" # String followed by CR and LF

(Note to C programmers: µCL strings are not null terminated; they have a size byte at the beginning. This
means that µCL strings can contain embedded null characters.)

Some character examples are shown below:

 'a' # The letter 'a'
 ' ' # A space
 'ñ' # The Latin−9 ñ character
 '"' # A double quote character
 '\dq\' # A double quote character
 '\sq\' # A single quote character
 '\tab\' # A tab character
 '\0\' # A null character
 '\nul\' # A null character

The program below adds some calls to uart_hex_byte_put to print out some numbers and characters:

 ucl 1.0
 # Copyright 2004 by Wayne C. Gramlich.
 # All rights reserved.

 library $pic16f876
 library $uart

 procedure main
 arguments_none
 returns_nothing

 call uart_string_put("Hello\cr,lf\")
 call uart_hex_byte_put(16)
 call uart_character_put(' ')
 call uart_hex_byte_put(0xaf)
 call uart_character_put(32)
 call uart_hex_byte_put(−1)
 call uart_string_put("\cr,lf\")

Executing this program produces the following output:

 The µCL Tutorial

 8. Numbers, Characters, and Strings 30

 Hello
 10 af ff

9. Constants and Expressions

A constant declaration allows you to a number (or string) to a symbolic name. From then on you can use the
symbolic name interchangeably with the number. The symbolic name is likely to be more meaningful than the
number.

The constant declaration has the following form:

 constant constant_name = constant_expression

where constant_name is a new symbol name for the newly defined and constant_expression is an
expression that consists of other numbers, strings, and constants.

Here are a few examples to get started:

 constant clock_frequency = 20000000
 constant instruction_rate = clock_frequency / 4
 constant version = "V1.3.2"

The first constant declaration is a simple one that sets the symbol clock_frequency to 20000000 (i.e..
20MHz.) The second constant declaration sets instruction_rate to the value of the constant
clock_frequency is divided by 4. The third constant expression sets version to the string "V1.3.2".

Some of the expressions available in µCL are listed in the table below:

Expression Description

−e
~e

negative e
bitwise NOT of e

e1 << e2
e1 >> e2

e1 shifted right by e2 bits
e1 shifted left by e2 bits

e1 ^ e2 e1 bitwise XOR (exclusive OR) with e2

e1 & e2 e1 bitwise AND with e2

e1 | e2 e1 bitwise OR with e2

e1 * e2
e1 / e2
e1 % e2

e1 multiplied by e2
e1 divided by e2
e1 modulo (i.e. remainder) e2

e1 + e2
e1 − e2

e1 added to e2
e1 minus e2

e1 ~ e2 e1 string concatenated with e2

The table above is partial list of the more common expressions; a more complete list is provided in a section
further below. In addition, expressions are listed from highest precedence (top) to lowest precedence (bottom)
in the table. Thus, −a * b − c * d is grouped as ((−a) * b) − (c * d). You may add parenthesis
to improve readability and change order of operation.

 The µCL Tutorial

 9. Constants and Expressions 31

A constant declaration may not reference a constant the its declared further down. They must be ordered so
that all constants in the constant expression portion of a constant declaration have been previously defined.

The program below shows a few constant declarations in operation:

 ucl 1.0
 # Copyright 2004 by Wayne C. Gramlich.
 # All rights reserved.

 library $pic16f876
 library $uart

 constant clock_frequency = 20000000
 constant instruction_rate = clock_frequency / 4
 constant baud_rate = 2400

 constant space = ' '
 constant crlf = "\cr,lf\"
 constant hello = "Hello" ~ crlf

 procedure main
 arguments_none
 returns_nothing

 call uart_string_put(hello)
 call uart_hex_byte_put(16)
 call uart_character_put(space)
 call uart_hex_byte_put(0xaf)
 call uart_string_put(crlf)

10. Variables and Assignments

A variable is used to store a value. There are two kinds of variables −− global and local. The format of a
global variable declaration is:

 global variable_name variable_type

and the format of a local variable declaration is:

 local variable_name variable_type

where the declaration must occur with in a procedure declaration. There are actually a few more kinds of
global variables (shared and register) but they are more specialized and are in a section further below.

Global variables are accessible by all procedures in an µCL program. Local variables are only accessible from
the procedure that they are defined within. It is legal for a local variable to have the same name as a global
variable, in which case the procedure can only access the local variable.

Both global and local variables are uninitialized in µCL.

An assignment statement in µCL looks as follows:

variable := expression

 The µCL Tutorial

 10. Variables and Assignments 32

Where variable is either a local or global variable and expression is an expression consisting of numbers,
strings, variables, and/or constants. A few example assignments statements are shown below:

 counter := 0
 counter := counter + 1
 average := (a + b) >> 1

The program below shows some local and global variables along with a few simple assignments:

 ucl 1.0
 # Copyright 2004 by Wayne C. Gramlich.
 # All rights reserved.

 library $pic16f876
 library $uart

 global glob byte

 procedure main
 arguments_none
 returns_nothing

 local loc byte

 glob := 0
 loc := 0
 call uart_hex_byte_put(loc)
 call uart_character_put(' ')
 call uart_hex_byte_put(glob)
 call uart_character_put(' ')
 call glob_increment()
 call uart_hex_byte_put(loc)
 call uart_character_put(' ')
 call uart_hex_byte_put(glob)
 call uart_string_put("\cr,lf\")

 procedure glob_increment
 arguments_none
 returns_nothing

 # This variable "loc" is different from the one in main:
 local loc byte

 loc := 0xff
 glob := glob + 1

The following output results:

 00 00 00 01

 The µCL Tutorial

 10. Variables and Assignments 33

11. Procedures

Procedures are sequences of statements that can be re−executed multiple times. The overall structure of a
procedure declaration is:

 procedure procedure_name
argument_declarations
return_declaration

local_variable_declarations

statement_list

where

procedure_name
is the procedure name,

argument_declarations
is a list of one or more procedure argument declarations, or a single arguments_none
declaration,

returns_declaration
is either a returns declaration or a returns_nothing declaration,

local_variable_declaration
is zero, one or more local variable declarations, and

statement_list
is a list of zero, one, or more statements.

The following is an example procedure that takes two arguments and returns one result:

 procedure average
 argument left byte
 argument right byte
 returns byte

 return (left + right) >> 1

This procedure takes two arguments and returns the average of the two. It is invoked in a expression as
follows:

 local high byte
 local low byte
 local threshold byte
 ...
 threshold := average(high, low)
 ...

In this example the values of the the high and low variable is copied to the argument variables left and
right respectively. The returned result is assigned to the variable threshold.

Another example procedure takes no arguments and has no return values:

 procedure global_count_increment
 arguments_none

 The µCL Tutorial

 11. Procedures 34

 returns_nothing

 global_count := global_count + 1

This procedure is invoked using a call statement:

 ...
 call global_count_increment()
 ...

The exact format of an argument declaration is as follows:

 argument argument_name argument_type

where

argument_name
is the name of argument, and

argument_type
is the argument type.

The there must be one argument declaration for each procedure argument.

If the procedure has no arguments, there must be a single arguments_none declaration that just consists of
the word arguments_none sitting on a line by itself:

 arguments_none

A procedure may or may not return a value. If it returns a value, it must have a returns declaration of the
following form:

 returns return_type

where

return_type
is the return type for the procedure.

If the procedure does not return anything, there must be a returns_nothing declaration than has the
following form:

 returns_nothing

12. About Indentation

We talked about indentation very briefly in section 3. It is time to talk about it a little more carefully. µCL is a
programming language that uses indentation to group statements and declarations together. The reason for this
is to provide better error messages. Languages that do not use indentation to perform grouping, tend to have
significantly worse error message handling when a grouping error is made.

 The µCL Tutorial

 12. About Indentation 35

The way indentation works, is that the µCL compiler sweeps through the entire program and figures out what
column the first printing (i.e. non−whitespace) character occurs in on each line. For the code fragment below,
the starting column is the number on the left.

 ...
 0 procedure main
 4 arguments_none
 4 returns_nothing
 0
 4 local counter byte
 0
 4 counter := 0
 4 loop_forever
 8 if counter 1 = 0
 12 call phase1()
 8 else
 12 call phase2()
 8 counter := counter + 1
 0
 0 procedure phase1
 ...

First, blank lines are ignored. Each time the column number increases from one non−blank line to the next
non−blank line, a new grouping is started. This is indicated with the { character. Each time the column
number decreases from one non−blank line to the next non−blank line, one or more groupings are closed.
Again this indicated with a } character. For the code fragment above, the grouping characters are shown
between the appropriate lines as shown below:

 ...
 0 procedure main

{
 4 arguments_none
 4 returns_nothing
 0
 4 local counter byte
 0
 4 counter := 0
 4 loop_forever
 {
 8 if counter 1 = 0

{
 12 call phase1()

}
 8 else

{
 12 call phase2()

}
 8 counter := counter + 1

}
}

 0
 0 procedure phase1
 ...

(Note to C programmers: Some C programmers feel that the curly braces add to the legibility of the code.
With the exception of figuring out what column number a line starts on, µCL totally ignores curly braces. Just
so long as the code is properly indented, the µCL compiler will happily ignore them.)

 The µCL Tutorial

 12. About Indentation 36

13. Simple_Statements

The simple statements in µCL are the assignment, call, if, switch, and return statements.

The assignment statement is previously covered in section 6. The assignment statement is unique in µCL in
that it is the only statement that does not start with a "keyword". Instead, the µCL compiler scans each line
and if it finds a line with the assignment operator (i.e. ':=') in it, it assumes that the line is an assignment
statement. An interesting side effect of this design choice is that µCL can add new keywords without breaking
any existing code.

The call statement is first seen in section 3. It's purpose is to evaluate an expression for its side−effects. The
format of the call is as follows:

 call call_expression

where

call_expression
is an expression that evaluated for its side effects.

The return statement causes the current procedure to terminate and returns control the calling procedure.
The format of the return statement is as follows:

 return return_expression

where

return_expression
is an expression that is evaluated to provide the procedure return value. If the procedure does not
return anything, this return expression not be provided.

The if statement is a real is used for testing conditional values. It has the following overall form:

 if expression1

statements1

 else_if expression2

statements2

 ...
 else_if expressionN

statementsN

 else
statementsN+1

where

expression i

is an expression that evaluate to a binary bit value of 1 or 0, and
statements i

is an indented block of statements that is executed if the corresponding expression evaluates to 1.
There can be zero, one or more else_if clauses. The else clause is also optional. The first expression
that evaluates to 1 causes its corresponds statement list to be executed. No other statement lists are executed.
If none of the expressions evaluate to 1, the last sequence of statements in the else clause are executed (if

 The µCL Tutorial

 13. Simple_Statements 37

they are present.)

The switch statement is used to perform a multi−way branch. The switch statement has the following
form:

 switch switch_expression
 case_maximum maximum_expression
 case case_expression1

statements1

 case case_expression2

statements2

 ...
 case case_expressionN

statementsN

 default
statementsN+1

where

switch_expression
is an expression that is evaluated,

maximum_expression
is a constant expression that specifies the largest expected value for switch_expression,

case_expression i

is a constant expression that specifies one of the possible values of switch_expression, and
statements i >

is a group of statements to be executed when switch_expression matches the corresponding
case_expression i .

Both the maximum_expression clause and the default clause is optional. There must be at lease one
case clause.

{Example goes here.}

14. Iteration Statements

The iteration statements are the loop_forever, loop_exactly, and while.

The loop_forever statement has the following form:

 loop_forever
statements

where

statements
is an indented block of statements that is repeatably executed.

The loop_exactly statement has the following form:

 loop_exactly loop_exactly_expression

 The µCL Tutorial

 14. Iteration Statements 38

statements

where

loop_exactly_expression
is an expression that is evaluated at the beginning of the loop to determine exactly how many times
the loop body will be executed

statements
is the loop body statements that are executed.

The while statement has the following form:

 while while_expression
statements

where

while_expression
is an expression that evaluates to a bit value of 1 or 0,

statements
is the loop body statements that get executed if while_expression evaluates to a 1.

15. Code and Data Banks

As Moore's law continues its onslaught of further miniaturization, many microcontroller instruction sets run
into code and data space problems. A code space problem occurs when there is insufficient space in the
control flow instructions (i.e. GOTO, CALL, etc.) to properly access all available program memory. The data
space problem occurs when there is insufficient space in the data access instructions to access all available
data. A typical solution to these problems is to add bank switching bits. The µCL language has some direct
support to deal with microcontroller instruction sets that have resorted to either code or data banks.

The code_bank declaration has the following form:

 code_bank code_bank_expression

where

code_bank_expression
is a constant expression that specifies the code bank that subsequent procedures will be placed in.

For example, the PIC16F87x series of microcontrollers has up to 4 code banks of 2048 instruction words
each. The code fragments below show how the code_bank declaration works:

 ...
 code_bank 0
 procedure main
 ...
 call data_sample()
 ...
 call data_process()

 The µCL Tutorial

 15. Code and Data Banks 39

 ...

 code_bank 1
 procedure data_sample
 ...

 code_bank 2
 procedure data_process
 ...

In this code the procedure main is in code bank 0, data_sample is in code bank 1, and
data_processes is in code bank 2. The µCL compiler is responsible for managing all of the extra
instructions required to call a procedure in one code bank from another code bank as shown by the calls to
data_sample and data_process from procedure main in the fragment above.

You are permitted to switch back and forth between code banks as many times as you want. The µCL
compiler will complain if there is insufficient space in a code bank to contain all of the requested procedures.
When placing procedures into specific code banks, it prudent to try to minimize the number of calls between
code banks to minimize the amount of time wasted producing code bank manipulation instructions.

The same problem that occurs with code banks can also occur with program data for some microcontrollers.
For example, the MicroChip PIC16F87x microcontrollers have 4 data banks of 128 bytes in each bank, where
some of the bytes are hardware control registers, some are reserved for future expansion, and the rest are
available data memory.

The data_bank declaration has the following form:

 data_bank data_bank_expression

where

data_bank_expression
is a constant expression that specifies the desired data bank that future variable declarations will be
allocated in.

The code fragment below shows how the data_bank declaration controls where variables are allocated.

 ...
 data_bank 0

 global phase byte

 procedure main
 ...
 local counter byte

 phase := 1

 data_bank 1

 procedure sample_data

 local low byte
 local high byte

 The µCL Tutorial

 15. Code and Data Banks 40

 local average byte
 ...
 phase := 2

In the fragment above, the global variable phase and local variable counter are in data bank 0. The local
variables low, high, and average are in data bank 1. The µCL compiler is responsible for generating the
extra instructions needed to switch between data banks without any further assistance.

The µCL compiler will inform you if you run out of storage from a given data bank.

On some microcontrollers, there is some memory that is shared between data banks. For example, the
MicroChip PIC16F87x series has 16 bytes of shared memory. This memory is prized because it can be
accessed without requiring any extra data bank switching instructions. The shared declaration provides a
way to allocated global variables from this pool of shared memory.

The shared command has the following form:

 shared variable_name variable_type

where

variable_name
is the variable name, and

variable_type
is the variable type.

As usual, the µCL compiler will inform you if try to allocate too many variables in shared memory.

16. About Types

The initial versions of µCL only support a small number of basic types. These basic types are shown in the
table below:

Type Size Smallest valueLargest value

Bit 1 0 1

Unsigned88 0 255

String

Over time, this list will be expanded until it eventually includes signed and unsigned integers of up to 32 bits
and some floating point numbers as well.

In µCL, strings are a sequence of bytes with a fixed contents and unchangeable length (i.e. they are
read−only.) There are some restrictions on

17. More About Expressions

{More about expressions goes here.}

 The µCL Tutorial

 16. About Types 41

18. Libraries

Libraries are the primary method available to µCL programmers for code reuse. They are typically used to
provide all of the register and bit definitions for a particular flavor of microcontroller and they are used
provide libraries of procedures that can be shared between different applications.

A library declaration has the following form:

 library library_name

where

library_name
is the name of the library to include.

This declaration causes the compiler process the code in the named library.

By convention, libraries that have names that start with a dollar sign character ('$') are taken from the µCL
system directory; otherwise, they come from the same directory as the source file. No path names are
permitted; the library must come one directory or the other.

Libraries are only processed once. Each subsequent request to include the same library will be silently skipped
over.

{more here}

19. Pins

{more about pins here}

20. Embedded Assembly Code

{assembly code goes here}

21. Controlled Delays

{controlled delays}

22. Interrupts

{more about interrupts here}

Copyright (c) 2004 by Wayne C. Gramlich. All rights reserved.

 The µCL Tutorial

 18. Libraries 42

