
The RoboBricks Project



Table of Contents
 RoboBricks Introduction...................................................................................................................................1

 RoboBricks Project News..................................................................................................................................3

 RoboBricks Specifications.................................................................................................................................9
 Table of Contents....................................................................................................................................9
 1 Introduction..........................................................................................................................................9
 2 Software Protocol.................................................................................................................................9
 3 Interrupts............................................................................................................................................12
 4 Baud Rate Control.............................................................................................................................13
 5 Electrical Specification......................................................................................................................14

 RoboBricks Modules........................................................................................................................................18
 Table of Contents..................................................................................................................................18
 Robobricks Catagories..........................................................................................................................18

 AnalogIn8 Robobrick (Revision C)................................................................................................................25
 Table of Contents..................................................................................................................................25
 1. Introduction.......................................................................................................................................25
 2. Programming....................................................................................................................................25
 3. Hardware...........................................................................................................................................27
 4. Software............................................................................................................................................29
 5. Issues.................................................................................................................................................29

 Compass8 Module (Revision E)......................................................................................................................30
 Table of Contents..................................................................................................................................30
 1. Introduction.......................................................................................................................................30
 2. Programming....................................................................................................................................30
 3. Hardware...........................................................................................................................................31
 4. Software............................................................................................................................................33
 5. Issues.................................................................................................................................................33

 Digital8 Module (Revision D)..........................................................................................................................34
 Table of Contents..................................................................................................................................34
 1. Introduction.......................................................................................................................................34
 2. Programming....................................................................................................................................34
 3. Hardware...........................................................................................................................................36
 4. Software............................................................................................................................................38
 5. Issues.................................................................................................................................................38

 DualMotor1Amp Module (Revision E)..........................................................................................................39
 Table of Contents..................................................................................................................................39
 1. Introduction.......................................................................................................................................39
 2. Programming....................................................................................................................................39
 3. Hardware...........................................................................................................................................41
 4. Software............................................................................................................................................43
 5. Issues.................................................................................................................................................43

 RoboBricks Introduction

i



Table of Contents
 IRDistance8 Module (Revision A)..................................................................................................................44

 Table of Contents..................................................................................................................................44
 1. Introduction.......................................................................................................................................44
 2. Programming....................................................................................................................................44
 3. Hardware...........................................................................................................................................46
 4. Software............................................................................................................................................47
 5. Issues.................................................................................................................................................47

 IREdge4 Module (Revision D)........................................................................................................................48
 Table of Contents..................................................................................................................................48
 1. Introduction.......................................................................................................................................48
 2. Programming....................................................................................................................................48
 3. Hardware...........................................................................................................................................50
 4. Software............................................................................................................................................51
 5. Issues.................................................................................................................................................51

 IRRemote1 Robobrick (Revision C)...............................................................................................................52
 Table of Contents..................................................................................................................................52
 1. Introduction.......................................................................................................................................52
 2. Programming....................................................................................................................................52
 3. Hardware...........................................................................................................................................52
 4. Software............................................................................................................................................54
 5. Issues.................................................................................................................................................54

 IO8 Module (Revision A).................................................................................................................................55
 Table of Contents..................................................................................................................................55
 1. Introduction.......................................................................................................................................55
 2. Programming....................................................................................................................................55
 3. Hardware...........................................................................................................................................57
 4. Software............................................................................................................................................58
 5. Issues.................................................................................................................................................58

 LaserHolder1 Module (Revision A)...............................................................................................................59
 Table of Contents..................................................................................................................................59
 1. Introduction.......................................................................................................................................59
 2. Hardware...........................................................................................................................................59
 3. Issues.................................................................................................................................................60

 LCD32 Module (Revision E)...........................................................................................................................61
 Table of Contents..................................................................................................................................61
 1. Introduction.......................................................................................................................................61
 2. Programming....................................................................................................................................62
 3. Hardware...........................................................................................................................................62
 4. Software............................................................................................................................................64
 5. Issues.................................................................................................................................................64

 RoboBricks Introduction

ii



Table of Contents
 LCD32Holder Module (Revision C)...............................................................................................................65

 Table of Contents..................................................................................................................................65
 1. Introduction.......................................................................................................................................65
 2. Hardware...........................................................................................................................................65
 3. Issues.................................................................................................................................................66

 Led10 Module (Revision F).............................................................................................................................67
 Table of Contents..................................................................................................................................67
 1. Introduction.......................................................................................................................................67
 2. Programming....................................................................................................................................67
 3. Hardware...........................................................................................................................................68
 4. Software............................................................................................................................................69
 5. Issues.................................................................................................................................................69

 Line3 Module (Revision A).............................................................................................................................70
 Table of Contents..................................................................................................................................70
 1. Introduction.......................................................................................................................................70
 2. Programming....................................................................................................................................70
 3. Hardware...........................................................................................................................................70
 4. Software............................................................................................................................................72
 5. Issues.................................................................................................................................................72

 MicroBrain8  Module (Revision C).................................................................................................................73
 Table of Contents..................................................................................................................................73
 1. Introduction.......................................................................................................................................73
 2. Programming....................................................................................................................................73
 3. Hardware...........................................................................................................................................75
 4. Software............................................................................................................................................77
 5. Issues.................................................................................................................................................77

 Multiplex8  Module (Revision A).....................................................................................................................78
 Table of Contents..................................................................................................................................78
 1. Introduction.......................................................................................................................................78
 2. Hardware...........................................................................................................................................78
 3. Issues.................................................................................................................................................80

 PICBrain11 Module (Revision D)...................................................................................................................81
 Table of Contents..................................................................................................................................81
 1. Introduction.......................................................................................................................................81
 2. Programming....................................................................................................................................81
 3. Hardware...........................................................................................................................................82
 4. Software............................................................................................................................................86
 5. Issues.................................................................................................................................................88

 Reckon2 Module (Revision B).........................................................................................................................89
 Table of Contents..................................................................................................................................89
 1. Introduction.......................................................................................................................................89
 2. Programming....................................................................................................................................89

 RoboBricks Introduction

iii



Table of Contents
 Reckon2 Module (Revision B)

 3. Hardware...........................................................................................................................................89
 4. Software............................................................................................................................................91
 5. Issues.................................................................................................................................................91

 RCInput8 Module (Revision B)......................................................................................................................92
 Table of Contents..................................................................................................................................92
 1. Introduction.......................................................................................................................................92
 2. Programming....................................................................................................................................92
 3. Hardware...........................................................................................................................................92
 4. Software............................................................................................................................................94
 5. Issues.................................................................................................................................................94

 ScanBase Module (Revision A).......................................................................................................................95
 Table of Contents..................................................................................................................................95
 1. Introduction.......................................................................................................................................95
 2. Hardware...........................................................................................................................................95
 3. Issues.................................................................................................................................................97

 ScanPanel Module (Revision B)......................................................................................................................98
 Table of Contents..................................................................................................................................98
 1. Introduction.......................................................................................................................................98
 2. Hardware...........................................................................................................................................98
 3. Issues...............................................................................................................................................100

 Sense3 Module (Revision A)..........................................................................................................................101
 Table of Contents................................................................................................................................101
 1. Introduction.....................................................................................................................................101
 2. Programming..................................................................................................................................101
 3. Hardware.........................................................................................................................................101
 4. Software..........................................................................................................................................103
 5. Issues...............................................................................................................................................103

 Servo4 Module (Revision I)...........................................................................................................................104
 Table of Contents................................................................................................................................104
 1. Introduction.....................................................................................................................................104
 2. Hardware Configuration.................................................................................................................104
 3. Programming..................................................................................................................................106
 4. Hardware.........................................................................................................................................107
 5. Software..........................................................................................................................................109
 6. Issues...............................................................................................................................................109

 Serial1 Module (Revision A).........................................................................................................................110
 Table of Contents................................................................................................................................110
 1. Introduction.....................................................................................................................................110
 2. Hardware.........................................................................................................................................110
 3. Issues...............................................................................................................................................111

 RoboBricks Introduction

iv



Table of Contents
 Sonar8 Module (Revision C).........................................................................................................................112

 Table of Contents................................................................................................................................112
 1. Introduction.....................................................................................................................................112
 2. Programming..................................................................................................................................112
 3. Hardware.........................................................................................................................................112
 4. Software..........................................................................................................................................114
 5. Issues...............................................................................................................................................114

 Switch8 Module (Revision F)........................................................................................................................115
 Table of Contents................................................................................................................................115
 1. Introduction.....................................................................................................................................115
 2. Programming..................................................................................................................................115
 3. Hardware.........................................................................................................................................116
 4. Software..........................................................................................................................................118
 5. Issues...............................................................................................................................................118

 TwinGearSensorLeft Robobrick (Revision D)............................................................................................119
 Table of Contents................................................................................................................................119
 1. Introduction.....................................................................................................................................119
 2. Hardware.........................................................................................................................................119

 TwinGearSensorRight Robobrick (Revision D).........................................................................................121
 Table of Contents................................................................................................................................121
 1. Introduction.....................................................................................................................................121
 2. Hardware.........................................................................................................................................121

 RoboBricks Introduction

v



RoboBricks Introduction
The RoboBricks project provides a bunch of sensory and control modules that can be easily plugged together
to form interesting robot systems. Indeed, they can be attached together with some plastic Lego® bricks to
build robots, just like the Lego MindStorms® product. (Hence, the name RoboBricks.)

The basic concept behind RoboBricks is based on the small family of chips sold by FerretTronics®. The
differences between RoboBricks and the FerretTronics chips are 1) RoboBricks support two way
communication between the RoboBricks whereas the FerretTronics chips only offer one−way communication
and 2) RoboBricks are at the printed circuit board level, whereas the FerretTronics products are at the chip
level.

The current batch of RoboBricks are based around the PIC12Cxx 8−pin OTP (One Time Programmable)
embedded microcontroller chips from Microchip®. From DigiKey®, the quantity 1 price is less than $2.00 a
chip and the quantity 25 price is about $1.00 each. These chips do not have hardware UART's (Universal
Asynchronous Receiver/Transmitter) in them, but a 2400 baud link can be emulated in firmware.

The overall RoboBrick architecture is shown below:

Bascially all software is developed on a full 32−bit development platform such as Windows®, MacOS®, or
some flavor of Unix® (e.g. Linux®, Solaris®, BSD®, etc.) An RS−232 cable connects to a Tether RoboBrick
which connects to the master RoboBrick via a 4 write cable. After the master RoboBrick has been
programmed, the tether cable can be disconnected. The master RoboBrick is responsible for sending and
commands and receiving data back from the slave robobricks.

When the master RoboBrick runs out of slave RoboBrick connections, processing power, or bandwidth, the
robot platform can be repartioned to have two or more master RoboBricks with another supreme master
RoboBrick in control of the masters. Thus, master RoboBricks can be cascaded in a hierarchical fashion.

Copyright (c) 1999−2002 by Wayne C. Gramlich. All rights reserved.

 RoboBricks Introduction 1

http://www.lego.com/
http://www.legomindstorms.com/
http://www.ferrettronics.com/
http://www.microchip.com/0/index.htm
http://www.digikey.com/


This is news section of the RoboBricks projects. It is currently a work in progress.

 RoboBricks Introduction

 RoboBricks Introduction 2



RoboBricks Project News
The current RoboBricks News is:

2004−Apr
Wayne is scambling to get the µCL compiler rewritten and ported to the Microsoft® before the next
RoboBRiX article is published in Servo magazine.

2004−Mar
The third article on RoboBRiX is published in Servo magazine.

2004−Feb
The second article on RoboBRiX is published in Servo magazine.

2004−Jan
The first article on RoboBRiX is published in Servo magazine.

2004−Dec
Robobricks are renamed to RoboBRiX to make acquiring a register trademark easier. The first batch
of RoboBRiX go on sale at the RobotStore. RobotStore is run by Mondo−tronics, Inc.

2003−Sep
Contract negociations complete and contract is signed.

2003−Aug
Contract negociation impass resolved and negociations continue.

2003−May
Contract negociations with vendor reach an impass.

2003−Mar
Selected a vendor to manufacture and market RoboBricks.

2003−Jan
Dealt with a 50 day delivery time with our replacement PCB vendor. It was not really their fault
though.

2002−Oct
Dealt crappy boards from our PCB vendor. Ultimately wound up ordering replacement boards from
another PCB vendor. Scratch one PCB vendor off our list. 2002−Aug−10
Finished ordering parts for RoboBrick alpha program from AcroName, DigiKey, and Jameco. We
were able to get a 10% discount from Jameco through our membership with the Robotics Society of
America. The price of the sonar modules from Acroname was increased from $25 to $30.

2002−Aug−9
The boards from CustomPCB have arrived back. No silkscreen was applied to the boards.

2002−Jul−18
Ordered 20 copies of panel5 for the RoboBrick alpha program from CustomPCB in Mylasia for $265.

2002−Jul−11
Sent out last call for the RoboBricks alpha program.

2002−Jun−28
Sent a message to the Home Brew Robotics Club mail list announcing the RoboBricks alpha program.

2002−Jun−05
Shipped Panel 4 off to OliMex for fabrication.

2002−Apr−30
By the way, RoboBrick development is currently awaiting the completion of my newCNC motion
controller board. This board is needed so that we can take panels that contain several RoboBricks and
cut out the individuale RoboBricks under computer control.

2002−Jan−30
The first of 4 RoboBricks talks was give at the Home Brew Robotics Club. Again, there is great
interest in getting them. The talk slides are available.

 RoboBricks Project News 3

http://www.servomagazine.com/
http://www.servomagazine.com/
http://www.servomagazine.com/
http://www.servomagazine.com/
http://www.robotstore.com/
http://www.acroname.com/
http://www.digikey.com/
http://www.jameco.com/
http://www.robots.org
http://www.robots.org
http://www.custompcb.com/
http://www.custompcb.com/
http://www.hbrobotics.org/
http://www.olimex.com/pcb/
http://web.hbrobotics.org/


2002−Jan−27
The RoboBricks project was on display at the Tech Museum for a second day.

2002−Jan−26
The RoboBricks project was on display at the Tech Museum. One of the most commonly asked
questions was `How can we get some?'

2002−Jan−10
The panel3 boards have come back, been cut into smaller boards and the assembly process continues.

2002−Jan−3
The panel3 files have been sent off to Alberta Printed Circuits. Yeah!

2001−Dec−28
The Light4−B and Servo4−C and are now panel3 ready. Added panels directory.

2001−Dec−27
The MotorScan−A is now panel3 ready.

2001−Dec−24
The IRSense2−A is now panel3 ready.

2001−Dec−22
The SpeechQV1−A is now panel3 ready.

2001−Dec−21
The OOPicHub15−A is now panel3 ready.

2001−Dec−20
The IRBeacon8−A is now panel3 ready.

2001−Dec−17
The LCD32−A is now panel3 ready.

2001−Dec−15
The Motor3−A is now panel3 ready.

2001−Dec−14
The SonarDT1−A and CompassDT1−A are now Fab3 ready.

2001−Dec−13
The Motor2−C and Shaft2−C are now panel3 ready.

2001−Dec−12
The Laser1−B is now panel3 ready.

2001−Dec−11
The ProtoPIC−B and PIC876Hub10−B are now panel3 ready.

2001−Dec−10
The Tether−C, Switch8−C, LaserHead1−B, and IRRemote1−A are now panel3 ready.

2001−Dec−8
The LED10−B is now panel3 ready.

2001−Dec−7
The InOut10−B is now panel3 ready.

2001−Dec−6
The Harness−C is now panel3 ready.

2001−Dec−5
The Compass8−B, Compass360−B, and BS2Hub8−B are now panel3 ready.

2001−Dec−4
Both AnalogIn4−C and BIROD5−A are now panel3 ready.

2001−Dec−3
AIROD4−A is now panel3 ready.

2001−Dec−1
Starting to prepare RoboBricks for Fab3. Activity9−B is now panel3 ready.

2001−Nov−30
Pretty much done with Laser1−A RoboBrick. panel2 is basically done. Panel3 will start shortly.

 RoboBricks Introduction

 RoboBricks Project News 4

http://www.thetech.org/
http://www.thetech.org/
http://www.apcircuits.com/


2001−Oct−23
Got the Light4−A RoboBrick working.

2001−Oct−22
Added the IRRemote1−A RoboBrick that Bill is working on. Got the AIROD2−A RoboBrick
working.

2001−Oct−15
The AnalogIn4−B RoboBrick is done.

2001−Oct−10
The BIROD2−B RoboBrick is done.

2001−Oct−4
The LaserHead1−A RoboBrick is done. We are now getting a usable signal from across the room with
very inexpensive IR sensors.

2001−Oct−1
The Activity9−A, PIC876Hub10−A, Tether−B RoboBricks are done.

2001−Sep−29
The Shaft2−B RoboBrick is done.

2001−Sep−28
The InOut10−A RoboBrick is done.

2001−Sep−16
The Servo4−B and Compass8−A RoboBricks are done. The Servo4−B boards have problems
whenever the servo runs up against a stop; the next revision will need a separate power supply.

2001−Sep−12
The LED4−B, Switch8−B, Motor2−B RoboBricks are now done. Unfortuately, the Motor2 board
required some trace rerouting; so a revision C will definitely be necessary. Also, the BS2Hub8
RoboBricks has been successfully programmed to talk to both a LED10−B and a Switch8−B. A
working robot is sure to be on−line soon.

2001−Sep−6
The panel2 order has been sliced and diced and at least one of most of the boards have been built. The
LED10−B board is the first one to burned into a OTP (One Time Programmable) device.

2001−Aug−22
The panel2 order has arrived back from Alberta Printed Circuits.

2001−Aug−20
The RoboBrick Specifications have been updated.

2001−Aug−19
The panel2 order was sent off to Alberta Printed Circuits.

2001−Aug−3
The panel2 order is ready to go. I will have to wait until I get back from a two week vacation before I
submit it to Alberta Printed Circuits though.

2001−Aug−2
All of the master and slave RoboBricks are now in ready for panel2. There are some changes that
need to be made to HobECAD, but that should only take a day or two. After I come back from a two
week vacation, the panel2 run will take place.

2001−Jul−29
The various master and slave RoboBricks are now panel2 ready. The debug RoboBricks still need to
be processed.

2001−Jun−21
The Activity4 RoboBrick and the BIROD2 RoboBricks are now panel2 ready.

2001−Jun−18
The Shaft2 RoboBrick is now panel2 ready.

2001−Jun−12
The LED10 and Out10 RoboBricks are now panel2 ready.

 RoboBricks Introduction

 RoboBricks Project News 5

http://www.apcircuits.com/
http://www.apcircuits.com/
http://www.apcircuits.com/


2001−Jun−5
The Switch8 and In8 RoboBricks are now 100% done. The release 0.46 version of µCL fixes yet
another subtraction bug that was encountered.

2001−Jun−2
The Motor2 RoboBrick is 100% done. It was necessary to do some clock adjustment to get the
Motor2 Robobrick to work every time. Thus, the clock adjust commands in the shared protocol really
payed off. The release 0.45 version of µCL fixes yet another register bank swapping problem that was
encountered (produces tighter code too.)

2001−May−23
At long last the Servo4 RoboBrick is 100% done. This is a big milestone, since Servo4 is one of the
very hardest of the RoboBricks to implement. The release 0.44 version of µCL fixes some problems
that were found along the way. Bill is working the bugs out of the LED10 RoboBrick.

2001−May−10
At long last the Threshold4 RoboBrick is 100% done. Most of the RoboBrick module ppages have
been reorganized to leave the artwork out. This makes the resulting PDF files smaller. Also, the
PIC12C509 programmer code was the µCL programming environment. The Parallel Port Server that
Wayne uses to run his PIC Programmer got some modifications as well.

2001−Apr−23
The specification for Stepper1 is done. Now only the code needs to be written. (Heh−heh ;−)

2001−Apr−22
Worked on software for AnalogIn4 and InOut4. Now there is only Stepper1 left to be done.

2001−Apr−21
Worked on software for BIROD2, In8, LED10, Motor2, Out10, Shaft2, and Switch8. Only three
modules left to finish up −− AnalogIn4 (easy), InOut4 (easy), and Stepper1 (very hard). In addition,
the 0.36 release of the µCL compiler improves code generation for the PIC16C505 along with
improved array indexing with constants.

2001−Apr−9
Rearranged the web pages into an introduction, news (i.e. this document), specifications, and
modules. All of the underlying module directories now generate PDF files. The top level directory has
two PDF files −− robobricks.pdf and rebobricks_all.pdf.

2001−Apr−2
Rewrote the RoboBrick Interrupt protocol stuff. There are now some shared commands for supporting
interrupts. Improved string handling and fixed another register bank switching bug in µCL. Upgraded
Threshold4 to use the new interrupt protocol stuff. Also, there is now a test program for testing
Threshold4.

2001−Mar−4
Updated the led4.ucl code to be a complete implementation of the LED4 specification. Renamed
Activity to be Activity4. Wrote the code for activity4.ucl.

2001−Mar−3
Updated the servo4.ucl code to be a complete implementation of the Servo4 specification. Better
comments too. This version needs the 0.30 version of the µCL compiler.

2001−Mar−1
Fixed output to GPIO2 for PIC509's in µCL (release 0.29.) Also, added the assembly directive. The
servo4.ucl code is working inside of a PIC12C509.

2001−Feb−14
Improved code generation for switch statements in µCL.

2001−Feb−13
Updated the µCL compiler to contain random number generation, oscillator calibration initialization,
A/D converter initialization, and fixed array and string constant access from different code and data
banks. Updated Threshold4 to contain a very complete implementation of the code.

2001−Feb−5

 RoboBricks Introduction

 RoboBricks Project News 6



Updated the programming specifications for AnalogIn4, In8, Shaft2, Switch8, Threshold4, and
Activity4 RoboBricks.

2001−Jan−31
Showed CDBot following a line of black electrical tape using RoboBricks at the Home Brew
Robotics Club meeting. Some folks at the Tech Museum showed up and were quite interested in
RoboBricks. Apparently there is some sort of similar technology called Stackable Core Modules
being developed over at Twin Cities Robotics Group (TCRG).

2001−Jan−21
Added links to CDBot.

2001−Jan−17
Updated Activity4, Harness, PIC16F876, and Tether to get the directions of SIN and SOUT properly
oriented. The programming specifications for the Motor2 RoboBrick have been updated. There is still
a bug in µCL that causes the delay routine to have a non−uniform delay.

2001−Jan−16
The boot loader for PIC16F876 is almost working with the [download] button in the µCL graphical
user interface. The boot loader is residing in code bank 3 (0x1800) and uses register bank 3 (0x180).

2000−Dec−30
Updated programming specification of In8 RoboBrick.

2000−Dec−21
Added the last remaining pictures for Threshold4 and PIC16F876. The µCL compiler now has support
to directly program a Microchip microcontroller.

2000−Dec−11
Added most of the remaining pictures (Activity4, AnalogIn4, Bench, Hub8, LED4, Motor2,
ProtoPIC8Pin, Stepper1, and Switch8.) We're only missing PIC16F876 and Threshold4 pictures now.
We've got LED4 working with a UV erasable PIC12CE674. Motor2 is starting to work. There are
some command transmission reliability problems being worked on. Sometimes the RoboBricks do not
reset properly on power up. Our short term goal is to get a Line following robot working using a
battery and the Hub8, PIC16F876, Threshold4, and Motor2 RoboBricks.

2000−Nov−30
Added a whole bunch of pictures of individual RoboBricks (Birod2, Harness, In8, InOut4, LED10,
out10, Servo4, Shaft2, and Tether). We're still missing a picture of LED4. Updated the source files for
harness and LED4. Continued bug fixing in µCL. LED4 code is now working using the PIC16F876
emulator. Stand−alone execution using a PIC12CE764 UV erasable part should occur soon. Starting
to add PIC programmer support to µCL development environment.

2000−Nov−15
Rearranged the µCL language specification to be in its own file. Documented the emerging µCL
programing environment. Added a whole bunch of issue sections to the revision A RoboBricks as
they get built out. There is now an over−arching RoboBrick Software Protocol. Also, because Bill
wired up a cable backwards, I added a Cable Mechanical Specification.

2000−Nov−9
The following RoboBricks are starting to work −− Tether (100% done), Harness (100% done), Bench
(100% done), Hub8 (100% done), PIC16F876 (Needs lots of software), Emulate (100% done), and
LED10 (50% done; more software needed). There is still a bunch of software development to do, but
the hardware seems to be working fairly well. The Revision B boards are going to switch from a
4−wire bus to a 6−wire RoboBrick interconnect standard. We had a heck of a time finding a 4−wire
crimper; we figure most people will have a much easier time finding a 6−wire crimper. Lastly, the
latest version of µCL now has the beginnings of an integrated development environment (sorry, no
documenation yet.)

Copyright (c) 2000−2002 by Wayne C. Gramlich. All rights reserved.

 RoboBricks Introduction

 RoboBricks Project News 7

http://www.geocities.com/homebrewrc/
http://www.geocities.com/homebrewrc/
http://www.thetech.org/
http://www.barb-n-bob.com/coreindex.htm
http://www.tcrobots.org/


This is the specification portion of the RoboBricks Projects. It is currently work in progress.

 RoboBricks Introduction

 RoboBricks Project News 8



RoboBricks Specifications

Table of Contents

Introduction1. 
Software Protocol2. 
Interrupts3. 
Baud Rate Control4. 
Electrical Specification5. 
Mechanical Specification6. 

1 Introduction

There are three components to the RoboBrick specifications −− the software protocol, electrical protocol, and
the mechanical connector specification.

2 Software Protocol

The RoboBrick protocol is very simple. The controlling processor sends out one or more command bytes and
the selected Robobrick responds with one or more response bytes. The RoboBrick protocol is asynchronous
serial in 8N1 format (i.e. 1 start bit, 8 data bits, no parity, and 1 stop bit.) The protocol speed is at 2400 baud.

All of the slave RoboBricks share some common commands to help with glitches, RoboBrick identication,
and clock drift management. These are discussed briefly below:

Glitches
A glitch occurs when a spurrious signal manages to cross−couple onto a RoboBrick signal wire.
There a few commands to help combat glitches.

Identification
Each RoboBrick has a bunch of identification information in it. This identification information
contains the major and minor version numbers of the RoboBrick protocol, the major and minor
version numbers for the RoboBrick itself and a 128−bit random number.

Clock Drift
RoboBricks are currently implemented using low cost 8−pin PIC processors running off of an internal
4MHz RC oscillator. While this reduces costs, RC oscillators are notoriously sensitive to temperature
variations. While most RoboBrick applications will choose to ignore this issue, there are a variety of
commands that can be used to adjust the RC osciallator frequency up and down as needed.

The shared commands are summarized textually below:

Glitch
Sometimes a strong current pulse from elsewhere in the robot will cross couple with a RoboBrick
signal wire and cause a spurrious start bit. The rest of the bits will be read as all ones. We call such a
command the glitch command and all it does is bump a counter that can be read back via the Glitch
read comand.

Glitch Read
This command returns the current value of the glitch counter and then resets the counter to zero.

ID Reset

 RoboBricks Specifications 9



This command will reset the ID pointer register.
ID Next

This command will return the next byte of identifier information. The ID pointer register is
incremented.

Clock Pulse
This command cause the system to send a null character back. This pulse width can be measured by
the master system to determine if the RC oscillator is running fast or slow.

Clock Read
This command returns the current value of the clock adjust register.

Clock Increment
This command increments the clock adjust register.

Clock Decrement
This command decrements the clock adjust register.

The shared command protocol is defined in the table below:

Shared RoboBrick Commands

Command
Bit Number

Send/ReceiveDescription
7 6 5 4 3 2 1 0

Glitch 1 1 1 1 1 1 1 1 Send Glitch Command

Glitch Read 1 1 1 1 1 1 1 0 Send Glitch Read Command

g g g g g g g g Receive Returns 8−bit gggggggg glitch counter value

ID Reset 1 1 1 1 1 1 0 1 Send ID Reset Command

ID Next 1 1 1 1 1 1 0 0 Send ID Next Command

i i i i i i i i Receive
Returns next 8−bit iiiiiiii identification byte
value

Clock Pulse 1 1 1 1 1 0 1 1 Send Clock Pulse Command

0 0 0 0 0 0 0 0 Receive
Returns a null byte that can be timed for
clock drift

Clock Read 1 1 1 1 1 0 1 0 Send Clock Read Command

c c c c c c c c Receive
Returns the 8−bit cccccccc clock adjust
register value

Clock
Increment

1 1 1 1 1 0 0 1 Send Clock Increment Command

Clock
Decrement

1 1 1 1 1 0 0 0 Send Clock Decrement Command

The identification bytes in each RoboBrick are arranged as follows:

Offset Name Description

0 RBMajor
Major Version Number for identification stream
(currently 1)

1 RBMinor
Minor Version Number for identification stream
(currently 0)

2 BrickID BrickID for common Bricks (see table below)

3 BrickRev Brick Revision (0=A, 1=B, 2=C, 3=D, 4=E 5=F,

 RoboBricks Introduction

 RoboBricks Specifications 10



6=G 7=H, etc.)

4 BrickFlags 8 RoboBrick Specific Flags

5
Reserved0 (use
0)

Reserved for future use

6
Reserved1 (use
0)

Reserved for future use

7
Reserved2 (use
0)

Reserved for future use

8−23 UID0−15 128−bit Unique Identifier (Randomly Generated)

24 NameLength RoboBrick Name Length

Next NameLength
Bytes

BrickName Name of RoboBrick in ASCII

Next Byte VendorLength Vendor Name Length

Next VendorLength
Bytes

VendorName Vendor Name in ASCII

Next Byte OptionsLength Options Length (optional)

Next OptionLength
Bytes

Options Option Bytes (optional)

The BrickFlags are currently defined as follows:

Bit
BrickFlags Description

7 6 5 4 3 2 1 0

c c=1 => clock adjust supported

i i=1 => interrupt protocol supported

o o=1 => optional bytes follow vendor name

b b=1 => Baud rate change is allowed

The RoboBricks are given for BrickID identifiers on a first come first serve basis. The following identifiers
have already been allocated:

ID RoboBrick Name

0−7
Reserved for
experimenters

8 LED4 (obsolete)

9 LED10 (obsolete)

10 In8 (obsolete)

11 BIROD2 (abandoned)

12 AnalogIn4

13 Out10 (obsolete)

14 Motor2

15 Servo4

16 Shaft2

17 Stepper1

 RoboBricks Introduction

 RoboBricks Specifications 11



18 Switch8 (obsolete)

19 Threshold4 (obsolete)

20 AIROD2 (abandoned)

21
Compass360
(obsolete)

22 Compass8 (obsolete)

23 InOut10

24 Laser1

25 Light4

26 Sonar1 (abandoned)

27 AIROD4

28 BIROD5 (abandoned)

29 SONARDT1

30 Bill Hubbard's RC4

31 IRProximity2

32 Digital8

33 DualMotor1Amp

34 IREdge4

Each brick is assigned a 128−bit random number. The probability of two bricks being assigned the same
random number is 1/(2128) which is a pretty small number. On Linux, the random numbers can be read from
/dev/random (or /dev/urandom.)

3 Interrupts

At 2400 baud, it can take a while to poll several input RoboBricks to see if anything interesting has occured.
Sometimes RoboBricks are sensing inputs that need a response that is faster than strict polling can provide.
For example, bumper detectors. To support low latency, many RoboBricks support the RoboBrick Interrupt
Protocol.

The RoboBrick Interrupt Protocol is very simple. Each RoboBrick that supports the protocol has two bits −−
the interrupt pending bit and the interrupt enable bit. The interrupt pending bit is set by the RoboBrick when a
prespecified user event has occured. The interrupt enable bit is set to allow the interrupt to occur.

The following steps occur when using interrupts:

The user sends some RoboBrick specific commands to set up the conditions for setting the interrupt
pending bit.

1. 

The user sends an enable interrupt command.2. 
When the interrupt condition occurs, the interrupt pending bit is set and an interrupt is triggered. The
interrupt is signaled by dropping the output line from the RoboBrick to a low.

3. 

The master processor detects that the interrupt has occured.4. 
One or more commands are sent to the Robobrick to figure out what happened. When the first bit of
the first command is received, the RoboBrick clears both the interrupt enable bit and restores its
transmit line high.

5. 

Depending upon the RoboBrick, the interrupt pending bit may need to be cleared by sending pending6. 

 RoboBricks Introduction

 3 Interrupts 12



bit clear command. For some other RoboBricks, the condition that sets the interrupt pending bit may
automatically clear.

If the user needs to query the RoboBrick before the interrupt occurs, any command will clear the interrupt
enable bit. In order to get another interrupt, another interrupt enable command must be sent.

Since many RoboBricks will implement the RoboBrick Interrupt Protocol, there are some common commands
defined to support the protocol:

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read Interrupt Bits
Send 1 1 1 0 1 1 1 1 Return the interrupt enable bit e and pending

bit p.Receive0 0 0 0 0 0 e p

Set Interrupt Bits Send 1 1 1 1 0 0 e p
Set interrupt enable bit to e and pending bit to
p.

Set Interrupt
Pending

Send 1 1 1 1 0 1 0 p Set interrupt pending bit to p.

Set Interrupt EnableSend 1 1 1 1 0 1 1 e Set interrupt enable bit to e.

4 Baud Rate Control

As of the version 1.1 of the RoboBricks protocol, the ability to change baud rate has been added. All
RoboBrick modules start out communicating at 2400 baud using an 8N1 (1 start bit, 8 data bits, No parity, and
1 stop bit) asynchronous serial protocol. A RoboBrick indicates that it can support increases in its baud rate by
seting bit 3 in the BrickFlags byte (5th byte = offset 4) of the RoboBrick identificiation string.

There are three RoboBrick baud rate control commands:

Read Available Baud Rates
This command will return a bit mask of the baud rates supported by the RoboBrick.

Read Current Baud Rate
This command will return a code that specifies what the current baud rate is.

Set New Baud Rate
This command will set the new baud rate.

The available baud rates are in the table below:

Baud Rate Code Mask (binary)

2400 0 0000 0001

4800 1 0000 0010

9600 2 0000 0100

19200 3 0000 1000

38400 4 0001 0000

57600 5 0010 0000

115200 6 0100 0000

230400 7 1000 0000

 RoboBricks Introduction

 4 Baud Rate Control 13



The detailed commands are:

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read
Available
Baud Rates

Send 1 1 1 0 1 1 1 0
Return the available baud rates as a mask
abcdefg where a=230400, b=115200, ...,
h=2400

Receive a b c d e f g h

Read Current
Baud Rate

Send 1 1 1 0 1 1 0 1 Return the current baud rate as rrr where
rrr=000 => 2400, rrr=001 => 4800, ...,
rrr=111 => 230400Receive 0 0 0 0 0 r r r

Set New Baud
Rate

Send 1 1 1 0 1 1 0 0 Set the new baud rate to rrr where
rrr=000 =>2400, rrr=001 => 4800, ...
rrr=111 =>230400. The first two bytes
are sent at the old baud rate. The next two
bytes are sent/received at the new baud
rate. If the RoboBrick does not receive the
last byte correctly at the new baud rate,
this command will fail and the baud rate
will remain unchanged.

Send 0 r r r 0 r r r

Receive 0 1 0 1 0 1 0 1

Send 0 1 0 1 0 1 0 1

The Set New Baud Rate command is a little tricky and merits additional discussion. Changing baud rates is
potentially risky. If the host attempts to change the baud rate, and the target RoboBrick sets the baud rate
incorrectly, the host will no longer be able to successfully communicate with the RoboBrick. The only way to
recover is to reset power to the RoboBrick to get it back to 2400 baud. For this reason, the command to set the
new baud rate requires positive acknowledgement that the baud rate has changed. The first two bytes of the
command are sent at the old baud rate, where the second byte specifies the desired new baud rate. The next
two bytes of the command are performed at the new baud rate. If the host does not get a '0101 0101', the
knows that something has gone wrong. If the RoboBrick does not get a '0101 0101' from the host, the
RoboBrick knows that something has gone wrong. If anything goes wrong, the baud rate reverts back to the
original value.

After the baud rate for a RoboBrick has been set, it probably makes sense to run the clock adjust algorithm to
make sure the RoboBrick clock is as close as possible to the host clock.

5 Electrical Specification

The RoboBrick electrical protocol is based around a 4 wires using standard 5−pin straight headers with .100
inch between the pins. The 4 wires are:

Ground (GND)
Ground return

Power (PWR)
+5 Volts of regulated DC power

Serial Down (MOUT => SIN)
Serial bit stream down using 8N1 (1 start bit, 8 data bits, no parity, and 1 stop bit) asynchronous
signaling at 2400 baud. The signal levels swing between .2 volts and +4.8 volts. A 1 is indicated by
4.8 volts and a zero is indicated by .2 volts. The start bit is a zero and the stop bit is a one.

Serial Up (MIN <= SOUT)

 RoboBricks Introduction

 5 Electrical Specification 14



Serial bit stream up using 8N1 asynchronous signaling at 2400 baud. The signal levels swing between
ground and +5 volts. A 1 is indicated by 4.8 volts and a zero is indicated by .2 volts. The start bit is a
zero and the stop bit is a one.

The printed circuit boards use standard .100 straight male headers. These are usually purchased in lengths of
30−40 pins (e.g. Jameco 160881), and are snipped to a length of 5 pins. The cables are manufactured using 5
pin female cable headers with .100 centers (e.g. Jameco 163686).

The pin outs for master boards are:

Pin 1 (GND)
GND stands for GrouND return.

Pin 2 (NC)
NC stands for No Connection. This pin is snipped off for polarization purposes.

Pin 3 (PWR)
PWR stand sfor PoWeR and corresponds to +5 volts of regulated DC power.

Pin 4 (MOUT)
MOUT stands for Master OUT and corresponds to the serial down connection for sending serial data
from the master RoboBrick to the slave RoboBrick.

Pin 5 (MIN)
MIN stands for Master IN and corresponds to the serial up connection for sending serial data from the
slave RoboBrick to the master RoboBrick.

The pin outs for the slave boards are:

Pin 1 (GND)
GND stands for GrouND return.

Pin 2 (NC)
NC stands for No Connection. This pin is snipped off for polarization purposes.

Pin 3 (PWR)
PWR stands for PoWeR and corresponds to +5 volts of regulated DC power.

Pin 4 (SIN)
SIN stands for Slave IN and corresponds to the serial down connection for sending serial data from
the master RoboBrick to the slave RoboBrick.

Pin 5 (SOUT)
SOUT stands for Slave OUT and corresponds to the serial up connection for sending serial data from
the slave RoboBrick to the master RoboBrick.

The cables are wired straight through with pin 2 left unconnected (i.e. pin 1 to pin 1, pin 3 to pin 3, pin 4 to
pin 4 and pin 5 to pin 5.) 22 AWG stranded wire must be used for the cable wires. There is no offical color
code for the cable wires.

Pin 2 is used to polarize the cable. A male pin (Jameco 145357) is jammed into pin 2 and the male pin that
sticks out is snipped off For a properly polarized cable and RoboBrick boards, it is not possible to plug the
cable into the board either backwards or off by one. It is possible to plug a master to a master and a slave to
slave, but no harm results.

6 Mechanical Specification

RoboBricks are compatible with the Lego®, MegaBloks®, and RokenBok® plastic toys. The standard pitch

 RoboBricks Introduction

5 Electrical Specification 15

http://www.lego.com/
http://www.megabloks.com/
http://www.rokenbok.com/


between studs on these toys is approximately 5/16 inches (or 4mm.) This means that a 4 by 4 square is 1.25
inches. The RoboBrick boards are always in units of 1.25 inch squares. All RoboBricks are 2.5 inches high by
some multiple of 1.25 inches wide. Thus, the smallest RoboBrick is 1.25 by 2.5 inches, the next size up is 2.5
by 2.5, and the one after that is 2.5 by 3.75, etc.

The top and bottom of each RoboBrick has a row of holes that fit over the studs on plastic bricks. Thus, the
holes are at least .195 inches in diameter. Since most RoboBrick printed circuit boards are double sided with
plated through holes, the holes should probably be drilled with at least a .210 inch drill. The formula for
determining the offset for stud N (where N starts at 0) is:

Offset = U/2 + N × U

where U is 5/16 of an inch. The expanded formula is:

Offset = .15625 + N × .31250

The first 8 values for this formula are shown below:

Count Offset (in.) N×.05+/−offset

0 0.15625 3×.05+.00625

1 0.46875 9×.05+.01875

2 0.78125 16×.05−.01875

3 1.09375 22×.05−.00625

4 1.40625 28×.05+.00625

5 1.71875 34×.05+.01875

6 2.03125 41×.05−.01875

7 2.34375 47×.05−.00625

Repeats on 2.5 inch grid

After 8 entries, the numbers repeat offset by 2.5 inches.

Somewhere on each RoboBrick, must be name of the RoboBrick. The standard naming convention is
`{name}−{revision}'. For example, 'Digital8−A', `DualMotor1Amp−B', etc. Please note that the revision
corresponds to both hardware revision and the software revision inside the microcontroller.

A diagram of the mechanical specification is shown below:

 RoboBricks Introduction

5 Electrical Specification 16



Copyright (c) 1999−2005 by Wayne C. Gramlich. All rights reserved.

This is the modules component of the RoboBricks project. It is currently work in progress.

 RoboBricks Introduction

5 Electrical Specification 17



RoboBricks Modules

Table of Contents

Robobricks Catagories• 
Master Robobricks ( MicroBrain8, PICBrain11 )• 
Slave Robobricks ( AnalogIn8, Compass8, CompassDT1, Digital8, DualMotor1Amp,
DualMotor2Amp, IREdge4, IRBeacon8, IRDistance4, IRDistance8, IRDistanceHolder,
IRProximity2, IO8, IRRemote1, Keypad12, Laser1, LaserHead1, LCD32, LCD32Holder, LED10,
Line3, ProtoPIC, RCInput8, Reckon2, Rotation2, Sense3, Sonar8, SonarSR, SonarDT1, SpeechQV1,
Servo4, SRF Holder, Stepper1, and Switch8 )

• 

Miscellaneous Robobricks ( IR Distance Holder, LaserHolder1, Scan Base, Scan Panel, Servo
Adaptor 0.4, Shaft Sense 2, SRF Holder 2, Strut 1x2, Strut 1x4, Strut 1x8, Twin Gear Sensor Left,
Twin Gear Sensor Right)

• 

Debug Robobricks ( Activity9, Debug16, Emulate, Harness, and Tether )• 
Obsolete Robobricks ( AIROD2, AIROD4, AIROD5, AnalogIn4, Bench, BIROD5, BS2Hub8,
Compass360, Hub8, In8, InOut4, InOut10, IRSense2, IRSense3, LED4, Light4, Motor2, Motor3,
MotorScan, OOPicHub15, Out10, PIC16F876, PIC876Hub10, Shaft2, Sonar1, ProtoPic8Pin, and
Threshold4 )

• 

Robobricks Catagories

Robobricks are partioned into four catagories:

Master Robobricks
A master module contains some sort of processor and a bunch of connectors for connecting to and
controlling 1 or more slave Robobricks (see definition below.) Many master modules have some sort
of power regulator for producing 5 volts from the battery voltage.

Slave Robobricks
A slave module performs some sort of input or output function. There are usually many slave
Modules per robot.

Debug Robobricks
A debug module provides some sort of debugging function. These modules are only during robot
development After a robot has been debugged, the debug modules can be removed.

Obsolete Robobricks
An obsolete module is one that no longer makes any sense to build. Typically they have been replaced
by something better. These are listed in a separate section below.

A robot consists of one master Module and one or more slave Modules. Debug Modules are added and
removed as needed for debugging.

Master Robobricks

The following master Robobricks are under active development:

MicroBrain8
The MicroBrain8 module provides a master module controlled by any processor that is pin with the
Basic Stamp II® from Parallax®. This module has a battery conntection, power switch, and 5 volt
linear voltage regulator. It has hub connections for controlling up to 8 modules.

 RoboBricks Modules 18

http://www.parallaxinc.com/


PICBrain11
The PICBrain11 module provides a master module controlled by a PIC16F876 from Microchip®. This
module has a battery connection, power switch, and 5 volt linear voltage regulator with fuse. It has
hub connections for controlling up to 11 modules. It can be directly connected to an RS−232 port on a
host computer.

Eventually, there should be master Modules for each of the more popular microcontrollers out there (e. g.
Basic Stamp II, HC11, AVR, 8051, Rabbit, etc.)

Slave Robobricks

The following slave Robobricks are being actively developed (in alphabetical order):

AnalogIn8
The AnalogIn8 module allows for the input of up to 8 analog voltages between 0 and 5 volts with a
resolution of up to 10 bits. There are 6 trim pots on board that can be jumpered to the first 6 analog
inputs.

Compass8
The Compass8 module uses the 1490 digital compass module from Dinsmore Instrument Company.
This module provides a 8 directions N, NE, E, SE, S, SW, W, and NW. This module can prevent a
robot from getting totally turned around.

CompassDT1
The CompassDT1 module uses the CMPS01 compass module from Devantech to provide a compass
bearing between 0.00 and 359.00 degrees.

Digital8
The Digital8 module has 8 I/O lines that can be used for input or output. A line can be changed from
input to output and back under program control. This module replaces InOut10, Out10, In8, and
InOut4 Modules.

DualMotor1Amp
The Robobricks DualMotor1Amp module an control up to two small DC motors. The motor voltage
input can range from 5 volts to 24 volts. It is capable of accelleration ramping and electronic
breaking. Lastly, it has an optional watchdog feature that will turn the motors off if a command has
not been received in a while.

DualMotor2Amp
The Robobricks DualMotor1Amp module an control up to two small DC motors with a current of up
to 2 amps. The motor voltage can be as high as 48 volts. The two internal H−Bridges can be tied
together to provide a current capacity of 3.5 amps to a single motor.

IRBeacon8
The IRBeacon8 module is used to provide an IR beacon that Modules can home in on. It is designed
for both stand alone operation and to work in a Module setting.

IRDistance4
The IRDistance4 module is used measure distances using up to 4 Sharp GP2D12 (InfraRed Optical
Distance) modules. The modules are typically attached to IRDistanceHolder modules.

IRDistance8
The IRDistance8 module is used measure distances using up to 8 Sharp GP2D12 (InfraRed Optical
Distance) modules. The modules are typically attached to IRDistanceHolder modules.

IRDistanceHolder
The IRDistanceHolder module is used carry 1 4 Sharp GP2D12 (InfraRed Optical Distance) module.

IREdge4
The IREdge4 module provides a way to use inexpensive IR emitter/detector pairs to sense changes in

 RoboBricks Introduction

Robobricks Catagories 19

http://www.microchip.com/
http://dinsmoregroup.com/dico/
http://www.robot-electronics.co.uk/htm/cmps.shtml
http://www.robot-electronics.co.uk/


surface reflectivity.
IRProximity2

The IRProximity2 module is used detect objects via reflection of an InfraRed (IR) light. There are two
light sources and one light receiver along one edge of the board.

IRRemote1
The IRRemote1 module is used to send and receive IR signals. Currently, only signals from Sony
style IR Remotes are supported.

Keypad12
The Keypad12 Module has 12 push buttons for user control inputs and 12 LED's for direct output.

LCD32
The LCD32 module displays 2 lines of 16 characters each using an LCD display.

LCD32Holder
The LCD32 module holdes a 2×16 LCD module that is plugged into the LCD32 module.

Laser1
The Laser1 Module is able to detect when an inexpensive laser pointer is reflecting off of a passive
reflector beacon. In conjunction with 3 reflector beacons placed in known locations, it is possible for a
robot to triangulate its position accurately.

LaserHead1
The LaserHead1 Module is a board that be used to mount a laser pointer and some photo detectors on.
It is meant to work in conjunction with the Laser1 Module.

LCD32
The LCD32 Module provides a way to output up to 32 characters (2 lines of 16 characters each) to a
Liquid Crystal Display.

LED10
The LED10 Module provides the ability to output 10 bits to 10 on board LED's.

Line3
The Line3 Module provides the ability to sense lines on flat surfaces for building line/maze followers.

PIC876Hub10
The PIC876Hub10 module provides a master Module controlled by PIC16F876 from Microchip®.
This module has a battery connection, power switch, and 5 volt linear voltage regulator with fuse. It
has hub connections for controlling up to 10 Modules. Lastly, it has the ability to sense the battery
voltage. This module has morphed into the PICBrain11.

ProtoPIC
The ProtoPIC Module is just a prototyping board for the 8−pin PIC's (e.g. PIC12C509 and
PIC12C672) and the 14−pin PIC's (e.g. PIC16C505.)

RCInput8
The RCInput8 module reads up to 8 RC servo pulse widths from a standard RC server receiver.

Reckon2
The Reckon2 module is used to manuver a robot. It can contol two motors in "differential steering"
mode. Each motor needs to have a shaft encoder with a quadrature output. If there is enough
resolution on the shaft encoder and the wheels are not too "squishy", it is possible to keep pretty
accurate track of a robot's location and bearing using deduced reckoning.

Rotation2
The Rotation2 module can keep track of up to two quadrature shaft encoders.

SpeechQV1
The SpeechQV1 Module is used to perform speech synthesis to allow a robot to talk.

Sense3
The Sense3 module contains a infrared distance, sonar and laser bearing sensor that is meant to be
scanned using a hobby servo.

Servo4
The Servo4 Module is used to connect to up to 4 standard servo motors.

 RoboBricks Introduction

Robobricks Catagories 20

http://www.microchip.com/


SonarDT1
The Sonar1 Module is used to provide a Module interface to the SRF04 sonar range finder from
Devantech.

Sonar8
The Sonar8 module can drive up to 8 SonarSR modules.

SonarSR
The SonarSR module provide an ultra−sonic send/receive functionality.

SRFHolder
The SRFHolder holds a Robot Electronics SRF04 sonar ranging module.

Stepper1
The Stepper1 Module can control one small unipolar or bipolar stepper motor.

Switch8
The Switch8 Module will read in 8 bits of data from on−board switches.

Below is a list of slave Robobricks that are under consideration for future development:

Analog Output Module
An anilog output module can output a single 5−bit output voltage.

Tilt Module
This module detects what its current inclination is.

IR Remote Module
This module detects signals from an IR Remote control.

Microphone Module
This module detects the current sound level. inclination is. It does not provide way to record sound.

FM Synthesis Module
This module produces sounds using FM synthesis.

Temperature Module
This module measures the current temperature.

Light Module
This module measures the current amount of ambient light.

Miscellaneous Robobricks

The following Miscellaneous Modules are being worked on:

IRDistance Holder
A board for holding a Sharp GP2D12 infrared distance sensor.

LaserHolder1
A board mecahnically supporting a small laser pointer for the Sense3 module.

Scan Base
A board for electrically connecting to a Scan Panel.

Scan Panel
A board for mounting on top of a servo horn. This typically used to mount other sensors, such as
sonar or IR distance sensors, to be swept back and forth. From revision B on, this board is used to
electrically connect to a Sense3 module.

Servor Adaptor 0.4
This board is used for adapting servos with .4 inch mounting hole on systems that "Lego" stud
spacing.

Shaft Sense 2
This module is meant to pick up a quadrature single from shaft mounted optical encoder wheel.

 RoboBricks Introduction

Robobricks Catagories 21

http://www.robot-electronics.co.uk/htm/srf04.shtml
http://www.robot-electronics.co.uk/
http://www.robot-electronics.co.uk/
http://www.robot-electronics.co.uk/htm/srf04tech.htm


SRF Holder
This board is used to hold a SRF04 module for sonar distance sensing.

Strut 1x2
This is just a small piece of PCB with two holes for Lego studs.

Strut 1x4
This is just a small piece of PCB with four holes for Lego studs.

Strut 1x8
This is just a small piece of PCB with eight holes for Lego studs.

Twin Gear Sensor Left
This module is designed to fit into the left side of a Tamiya Twin Gear motor box and extract a
quadrature signal off of one of the gears.

Twin Gear Sensor Right
This module is designed to fit into the right side of a Tamiya Twin Gear motor box and extract a
quadrature signal off of one of the gears.

Debug Robobricks

The following Debugging Modules are under active development:

Activity9
The Activity4 Module is used to detect communication activity between two Modules.

Debug16
The Debug16 Module is used to view up to 16 8−bit data values inside of many Module modules.

Emulate
The Emulate board uses an 28−pin PIC16F876 with flash memory to emulate a PIC12C519, a
PIC12C672, or a PIC16C505. The PIC16F876 has flash memory so it is easier to erase than the other
parts which require a UV light.

Harness
The Harness Module is used as a testing harness for testing other Modules. The Harness Module has
an RS−232 connection and a connection to a single slave Module.

Tether
The Tether Module provides a wire connection between a master Module and a computer via a
standard telephone extension cord. The connection to the computer is via a standard 9−pin RS−232
connector.

Obsolete Modules

The obsolete Modules are listed below:

Activity4 (Use Activity9 instead!)
The Activity4 Module is used to detect communication activity between two Modules.

AnalogIn4
The AnalogIn4 Module allows for the input of up to 4 analog voltages between 0 and 5 volts with a
resolution of 8 bits.

AIROD2 (Use AIROD4 instead!)
The AIROD2 Module is used to measure distances using up to 2 the Sharp® GPD2D12 analog
infrared distance measurement units.

AIROD4
The AIROD4 Module uses the Sharp® GP2D12 analog infrared distance measurement device to
measure distances between 3 and 30 centimeters. Currently, the GP2D12 seems to cost about half

 RoboBricks Introduction

Robobricks Catagories 22



what the GP2D05 used in the BIROD2 Module.
AIROD5

The AIROD4 Module uses the Sharp® GP2D12 analog infrared distance measurement device to
measure distances between 3 and 30 centimeters. Up to five GP2D12's can be supported.

BIROD2 (Use BIROD5 instead!)
The BIROD2 Module is used to connect to up to 2 of the Sharp® GP2D05 IROD (InfraRed Optical
Distance) measuring sensors. This version of the Sharp chip provides a single bit of information for
when the sensor is within a fixed distance an object.

BIROD5
The BIROD2 Module is used to connect to up to 5 of the Sharp® GP2D05 IROD (InfraRed Optical
Distance) measuring sensors. This version of the Sharp chip provides a single bit of information for
when the sensor is within a fixed distance an object.

Bench (Use a master Module instead)
The Bench Module provides a way to provide power to a bunch of Modules via a standard 5 volt
bench supply. It has two banana plugs to provide the connection.

BS2Hub8
The BS2Hub8 module provides a master Module controlled by the Basic Stamp II® from Parallax®.
This module has a battery conntection, power switch, and 5 volt linear voltage regulator. It has hub
connections for controlling up to 8 Modules. This module has morphed into the MicroBrain8 module.

Compass360
The Compass360 Module uses the 1655 analog compass module from Dinsmore Instrument
Company. It can provide a resolution that is good to about 1 in 256 (1.4 degree.) The magnetic
environment that a robot operates in can generate deviations of 10's of degrees however.

Hub8 (Use a master Module instead)
The Hub8 Module can connect up to 8 slave Modules.

In8 (Use InOut10 instead!)
The In8 Module will read in 8 bits of data.

InOut4 (Use InOut10 instead!)
The InOut4 Module allows for the bi−directional input or output of up to 4 signals. The direction of
input or output can be changed dyamically. This Module can be used to talk to a serial bus such as
I2C.

InOut10
The InOut10 Module has 10 I/O lines that can be used for input or output. A line can be changed from
input to output and back under program control. This module replaces Out10, In8, and InOut4
Modules.

IRSense2
The IRSense2 Module is used seek out IR Beacons and do simple proximity detection.

IRSense3
The IRSense3 module is used to do simple IR proximity detection in three directions.

LED4 (Use LED10 instead)
The LED4 Module provides the ability to output 4 bits to 4 on board LED's.

Light4
The Light4 Module provides a way to use inexpensive IR emitter/detector pairs to sense changes in
surface reflectivity. The input level is renal flexibility in control.ad as an analog value to provide
additional flexibility in control.

Motor2
The Motor2 Module can control up to two small DC motors. The motor voltage input can range from
5 volts to 24 volts. The Motor2 Module is capable of electronic breaking.

Motor3
The Motor3 Module allows for control of up to three small DC motors via pulse width modulation.
The motor voltage input can range from 1 volt to 24 volts. There is no electronic breaking for the

 RoboBricks Introduction

Robobricks Catagories 23

http://www.parallaxinc.com/
http://dinsmoregroup.com/dico/
http://dinsmoregroup.com/dico/


Motor3 Module.
MotorScan

The MotorScan Module is used to provide horizontal rotational scan platform based on the Tamiya
Universal Gear Box. A combination of laser head, sonar, and IR sensors can be placed on the vertical
shaft and rotated around.

Out10 (Use InOut10 instead!)
The Out10 Module provides the ability to output 10 digital bits to a terminal strip.

OOPicHub10
The OOPicHub15 is an adaptor board for the OOPic by Savage Innovations. The newer OOPIC
module that is pin compatible with the Parallax Basic Stamp II is now the preferred way to go

PIC16F876 (Use PIC876Hub10 instead!)
The PIC16F876 master Module is based around the PIC16F876 microcontroller from MicroChip®.
This microcontroller has the ability to write into its own program memory without requiring any
additional voltages or hardware.

ProtoPIC8Pin (Use ProtoPIC instead!)
The ProtoPIC8Pin Module is a prototype board for building Modules using an 8−pin PIC. ProtoPIC
works with 8 and 14−pin PIC's.

Shaft2
The Shaft2 Module can keep track of the quadrature encoding of 2 shaft encoders.

Sonar1
The Sonar1 Module provides an active sonar range finder that can measure distances 5 centimeters to
3 meters. It uses some inexpensive ultrasound transducers (~$6US).

Threshold4 (Use Light4 instead!)
The Threshold4 Module consists of 4 analog voltage comparators. Each comparator compares an
input voltage against a fixed voltage that is set a small potentiometer. There is one potentiometer per
comparator. The resulting 4 binary bits of data are avaiable for querying.

Copyright (c) 1999−2002 by Wayne C. Gramlich. All rights reserved.

This is the Revision A verion of the AnalogIn8 RoboBrick. The status of this project is work in progress.

 RoboBricks Introduction

Robobricks Catagories 24

http://www.oopic.com/home.htm
http://www.oopic.com/
http://www.microchip.com/


AnalogIn8 Robobrick (Revision C)

Table of Contents

This document is also available in PDF format.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 
3.3 Construction Instructions♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The AnalogIn8 RoboBrick allows for the input of up to 4 analog voltages between 0 and 5 volts with a
resolution of 8 bits.

2. Programming

The AnalogIn8 RoboBrick is continuously reading the analog inputs from its four A/D pins. The controlling
program can just read the results of the digital conversion, or it can have the result down converted into a
single binary bit. Each pin has has a threshold high and threshold low register that is used for the down
conversion. Whenever the digital conversion exceeds the high threshold register, the down coversion results in
a 1. Whenever the digital conversion is lower than the low threshold register, the down conversion results in a
0. A hysterisis effect can be introduced by having some spread between the high and low threshold values.

There AnalogIn8 RoboBrick operates in either regular mode or Vref mode. In regular mode, all four inputs
are A/D converted between 0 and 5 volts. In Vref mode, input 1 is used as Vref, the highest expected input
voltage, and there remaining three inputs are A/D converts betweeen 0 and Vref.

After the down coversions to binary bits, the result is 4−bits of binary data. A complement mask can be used
to selectively invert individual bits in the 4−bit data.

The AnalogIn8 RoboBrick supports RoboBrick Interrupt Protocol for those lines that are being used as inputs.
The interrupt pending bit is set whenever the the formula:

L&(~I) | H&I | R&(~P)&I | F&P&(~I)

is non−zero, where:

I is the current input bits XOR'ed with the complement mask (C)• 
P is the previous value of I• 
L is the low mask• 
H is the high mask• 
R is the raising mask• 

 AnalogIn8 Robobrick (Revision C) 25



F is the falling mask• 

and

~ is bit−wise complement• 
| is bit−wise OR• 
& is bit−wise AND• 

Once the interrupt pending bit is set, it must be explicitly cleared by the user.

In addition to the common shared commands and the shared interrupt commands, the AnalogIn8 RoboBrick
supports following commands:

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read Pin
Send 0 0 0 0 0 0 b b Read pin bb and respond with 8−bit value

vvvvvvvvSend v v v v v v v v

Read Binary Values
Send 0 0 0 0 0 1 0 0 Return the binary values abcd (after XOR'ing

with complement mask)Receive 0 0 0 0 a b c d

Read Raw Binary
Send 0 0 0 0 0 1 0 1 Return the raw binary values abcd (no XOR

with complement mask)Receive 0 0 0 0 a b c d

Reset Send 0 0 0 0 0 1 1 0 Reset everything to zero

Read Complement
Mask

Send 0 0 0 0 1 0 0 0
Return and return the complement mask cccc

Receive 0 0 0 0 c c c c

Read High Mask
Send 0 0 0 0 1 0 0 1

Return and return the high mask hhhh
Receive 0 0 0 0 h h h h

Read Low Mask
Send 0 0 0 0 1 0 1 0

Return and return the high mask llll
Receive 0 0 0 0 l l l l

Read Raising Mask
Send 0 0 0 0 1 0 1 1

Return and return the raising mask rrrr
Receive 0 0 0 0 r r r r

Read Falling Mask
Send 0 0 0 0 1 1 0 0

Return and return the falling mask ffff
Receive 0 0 0 0 f f f f

Read Vref Mode
Send 0 0 0 0 1 1 0 1

Read and return the Vref mode bit v
Receive 0 0 0 0 0 0 0 f

Set Vref Mode Send 0 0 0 0 1 1 1 v
Set the Vref mode to v (0=regular 1=Vref
Mode)

Read High Threshold
Send 0 0 0 1 0 0 b b Read and return high threshold for pin bb of

hhhhhhhhReceive h h h h h h h h

Read Low Threshold
Send 0 0 0 1 0 1 b b Read and return low threshold for pin bb of

llllllllReceive l l l l l l l l

Set High Threshold
Send 0 0 0 1 1 0 b b

Set high threshold for pin bb to hhhhhhhh
Send h h h h h h h h

Set Low Threshold
Send 0 0 0 1 1 1 b b

Set low threshold for pin bb to llllllll
Send l l l l l l l l

 RoboBricks Introduction

 AnalogIn8 Robobrick (Revision C) 26



Set Complement MaskSend 0 0 1 0 c c c c Set complement mask to cccc

Set High Mask Send 0 1 0 0 h h h h Set high mask to hhhh

Set Low Mask Send 0 1 0 1 l l l l Set low mask to llll

Set Raising Mask Send 0 1 1 0 r r r r Set raising mask to rrrr

Set Falling Mask Send 0 1 1 1 f f f f Set falling mask to ffff

Read Interrupt Bits
Send 1 1 1 0 1 1 1 1 Return the interrupt pending bit p and the

interrupt enable bit e.Receive 0 0 0 0 0 0 e p

Set Interrupt
Commands

Send 1 1 1 1 0 c c c Set Interrupt Command ccc.

Shared Commands Send 1 1 1 1 1 c c c Execute common shared command ccc

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the AnalogIn8 RoboBrick is shown below:

 RoboBricks Introduction

 3. Hardware 27



The parts list kept in a separate file −− analogin8.ptl.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

analogin8_back.png
The solder side layer.

analogin8_front.png

 RoboBricks Introduction

3. Hardware 28



The component side layer.
analogin8_artwork.png

The artwork layer.
analogin8.gbl

The RS−274X "Gerber" back (solder side) layer.
analogin8.gtl

The RS−274X "Gerber" top (component side) layer.
analogin8.gal

The RS−274X "Gerber" artwork layer.
analogin8.drl

The "Excellon" NC drill file.
analogin8.tol

The "Excellon" tool rack file.

3.3 Construction Instructions

The construction instructions are in separate file to be a little more printer friendly.

4. Software

The AnalogIn8 software is available as one of:

analogin8.ucl
The µCL source file.

analogin8.asm
The resulting human readable PIC assembly file.

analogin8.lst
The resulting human readable PIC listing file.

analogin8.hex
The resulting Intel® Hex file that can be fed into a PIC12C5xx programmer.

5. Issues

Any fabrication issues that come up will be discussed here.

Copyright (c) 2000−2005 by Wayne C. Gramlich. All rights reserved.

This is the Revision E verion of the Compass8 module. The status of this project is finished.

 RoboBricks Introduction

3. Hardware 29



Compass8 Module (Revision E)

Table of Contents

This document is also available in PDF format.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The Compass8 module is used to connect to a Dinsmore Instrument Company digital compass. The compass
can report the 8 bearings (N, NE, E, SE, S, SW, W, NW.)

I currently only have one of the digital compass modules and it has less than ideal behavior. My compass
module works best in an envionment which has some vibration, otherwise the compass is prone to sticking
and can be off by as much as 90 degrees. There is some significant hysterisis as rotation is changed; trying to
steer a robot straight by aligning the robot with a bearing boundary (e.g. between N and NE) will not yield a
very straight course due to this observed hysterisis effect. Of course, I may have a `lemon' module and other
people might have different experiences with their moduels. However, if all you want is basic compass
bearing, the Dinsmore digital compass module does seem to meet that requirement at a very reasoable cost.

If you want a more accurate compass module, you might want to try the CMPS01 magnetic compass module
available at: Robot Electronics.

2. Programming

The basic operation is to send a query to the Compass8 Module to read the 3 bits of bearing data.

The Compass8 Module supports Module Interrupt Protocol. The interrupt pending bit is set whenever the the
formula:

B&M

is non−zero, where:

B is the bearing expanded out into an 8−bit vector with only 1 bit turned on,• 
M is the interrupt mask, and• 
& is bit−wise AND• 

Once the interrupt pending bit is set, it must be explicitly cleared by the user.

The Compass8 Module supports both the standard shared commands and the shared interrupt commands in

 Compass8 Module (Revision E) 30

http://dinsmoregroup.com/dico/
http://www.robot-electronics.co.uk/htm/cmps.shtml


addition to the following commands:

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read Bearing

Send 0 0 0 0 0 0 0 0 Return bearing bbb (N=000,
NE=001, E=010, SE=011,
S=100, SW=101, W=110,
NW=111)

Receive 0 0 0 0 0 b b b

Read Interrupt
Mask

Send 0 0 0 0 0 0 0 1 Return interrupt mask
mmmmmmmm (N, NE, E, SE,
S, SW, W, NW)Receive m m m m m m m m

Read Raw
Send 0 0 0 0 0 0 1 0

Return raw data abcd
Receive 0 0 0 0 a b c d

Set Interrupt Mask
Send 0 0 0 0 0 0 1 1 Set interrupt mask to

mmmmmmmm (N, NE, E, SE,
S, SW, W, NW)Send m m m m m m m m

Read Interrupt
Bits

Send 1 1 1 0 1 1 1 1 Return the interrupt pending bit
p and the interrupt enable bit e.Receive 0 0 0 0 0 0 e p

Set Interrupt
Commands

Send 1 1 1 1 0 c c c Set Interrupt Command ccc.

Shared
Commands

Send 1 1 1 1 1 c c c Execute Shared Command ccc.

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the Compass8 Module is shown below:

 RoboBricks Introduction

 3. Hardware 31



The parts list kept in a separate file −− compass8.ptl.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

compass8_back.png
The solder side layer.

compass8_front.png
The component side layer.

compass8_artwork.png
The artwork layer.

compass8.gbl
The RS−272X "Gerber" back (solder side) layer.

compass8.gtl
The RS−272X "Gerber" top (component side) layer.

compass8.gal
The RS−272X "Gerber" artwork layer.

compass8.drl
The "Excellon" NC drill file.

compass8.tol
The "Excellon" tool rack file.

 RoboBricks Introduction

3. Hardware 32



4. Software

The Compass8 software is available as one of:

compass8.ucl
The µCL source file.

compass8.asm
The resulting human readable PIC assembly file.

compass8.lst
The resulting human readable PIC listing file.

compass8.hex
The resulting Intel® Hex file.

5. Issues

Any fabrication issues that come up are listed here.

Copyright (c) 2001−2004 by Wayne C. Gramlich. All rights reserved.

This is the Revision D verion of the Digital8 module. The status of this project is finished.

 RoboBricks Introduction

 4. Software 33



Digital8 Module (Revision D)

Table of Contents

This document is also available in PDF format.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The Digital8 module provides the ability to input and output 8 bits of digital data. The direction of each bit
can be changed under program control.

2. Programming

The programmer can download a complement mask to cause any of the bits to be complemented prior to
reading.

The Digital8 module supports the Interrupt Protocol. The interrupt pending bit is set whenever the the
formula:

L&(~I) | H&I | R&(~P)&I | F&P&(~I)]

is non−zero, where:

I is the current input bits XOR'ed with the complement mask (C)• 
P is the previous value of I• 
L is the low mask• 
H is the high mask• 
R is the raising mask• 
F is the falling mask• 

and

~ is bit−wise complement• 
| is bit−wise OR• 
& is bit−wise AND• 

Once the interrupt pending bit is set, it must be explicitly cleared by the user.

The Digital8 module supports both the standard shared commands and the shared interrupt commands in
addition to the following commands:

 Digital8 Module (Revision D) 34



Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read Inputs
Send 0 0 0 0 0 0 0 0 Return 8−bits of input iiii iiii (after

XOR'ing with complement mask)Receive i i i i i i i i

Read Outputs
Send 0 0 0 0 0 0 0 1 Return 8−bits of the outputs oooo

oooo (after XOR'ing with
complement mask.)Receive o o o o o o o o

Read Complement
Mask

Send 0 0 0 0 0 0 1 0 Return 8−bits of complement mask
cccc ccccReceive c c c c c c c c

Read Direction
Mask

Send 0 0 0 0 0 0 1 1 Return 8−bits of direction mask
dddd ddddReceive d d d d d d d d

Read Low Mask
Send 0 0 0 0 0 1 0 0

Return 8−bits of low mask llll llll
Receive l l l l l l l l

Read High Mask
Send 0 0 0 0 0 1 0 1 Return 8−bits of the high mask

hhhh hhhhReceive h h h h h h h h

Read Rising Mask
Send 0 0 0 0 0 1 1 0 Return 8−bits of the rising mask

rrrr rrrrReceive r r r r r r r r

Read Falling Mask
Send 0 0 0 0 0 1 1 1 Return 8−bits of the falling mask

ffff ffffReceive f f f f f f f f

Read Raw
Send 0 0 0 0 1 0 0 0 Return 8−bits of raw input data rrrr

rrrr (without XOR'ing with
complement mask)Receive r r r r r r r r

Reset Outputs Send 0 0 0 1 0 0 0 0
Set all 8 bits of outputs to 0 (then
XOR with complement mask).

Set Outputs
Send 0 0 0 1 0 0 0 1

Set output bits to oooo oooo.
Send o o o o o o o o

Set Complement
Mask

Send 0 0 0 1 0 0 1 0 Set 8−bits of complement mask to
cccc ccccSend c c c c c c c c

Set Direction Mask
Send 0 0 0 1 0 0 1 1 Set 8−bits of direction mask to

dddd dddd 1=input; 0=outputSend d d d d d d d d

Set Low Mask
Send 0 0 0 1 0 1 0 0

Set 8−bits of low mask to llll llll
Send l l l l l l l l

Set High Mask
Send 0 0 0 1 0 1 0 1 Set 8−bits of the high mask to hhhh

hhhhSend h h h h h h h h

Set Rising Mask
Send 0 0 0 1 0 1 1 0 Set 8−bits of the rising mask to rrrr

rrrrSend r r r r r r r r

Set Falling Mask
Send 0 0 0 1 0 1 1 1 Set 8−bits of the falling mask to ffff

ffffSend f f f f f f f f

Set Outputs Raw
Send 0 0 0 1 1 0 0 0 Set 8−bits to oooo oooo with no

complement mask.Send o o o o o o o o

Reset Everything Send 0 0 0 1 1 0 0 1
Reset all registers to 0 and set
direction bits to 1 (input)

Set Output Bit Send 0 0 1 0 v b b b Set output bit bbbb to v

 RoboBricks Introduction

 Digital8 Module (Revision D) 35



Set Outputs Low Send 0 1 0 0 l l l l
Set low order 4−bits of Outputs to
llll and then XOR complement
mask

Set Outputs High Send 0 1 0 1 h h h h
Set high order 4−bits of Outputs to
hhhh and and then XOR
complement mask

Set Direction Low Send 0 1 1 0 l l l l
Set low order 4−bits of direction to
llll.

Set Direction High Send 0 1 1 1 h h h h
Set high order 4−bits of direction to
hhhh.

Set Interrupt
Commands

Send 1 1 1 1 0 c c c Set Interrupt Command ccc.

Shared CommandsSend 1 1 1 1 1 c c c Execute Shared Command ccc

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the Digital8 module is shown below:

 RoboBricks Introduction

 3. Hardware 36



The parts list kept in a separate file −− digital8.ptl.

3.2 Printed Circuit Board

The printed circuit files are listed below:

digital8_back.png
The solder side layer.

digital8_front.png
The component side layer.

digital8_artwork.png
The artwork layer.

digital8.gbl
The RS−274X "Gerber" back (solder side) layer.

digital8.gtl
The RS−274X "Gerber" top (component side) layer.

digital8.gal
The RS−274X "Gerber" artwork layer.

 RoboBricks Introduction

3. Hardware 37



digital8.drl
The "Excellon" NC drill file.

digital8.tol
The "Excellon" tool rack file.

3.3 Construction Instructions

The construction Instructions are located in a separate file to be a little more printer friendly.

4. Software

The Digital8 software is available as one of:

digital8.ucl
The µCL source file.

digital8.asm
The resulting human readable PIC assembly file.

digital8.lst
The resulting human readable PIC listing file.

digital8.hex
The resulting Intel® Hex file.

5. Issues

Any fabrication issues will be listed here.

Copyright (c) 2001−2005 by Wayne C. Gramlich. All rights reserved.

This is revision E of the DualMotor1Amp module. The status of this project is work in progress.

 RoboBricks Introduction

3. Hardware 38



DualMotor1Amp Module (Revision E)

Table of Contents

This document is also available as a PDF document.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The DualMotor1Amp module allows for control of up to two small DC motors via pulse width modulation.
Power is provided via an external terminal block. For low voltage motors, an on−board 5 volt voltage
regulator can be optionally used to limit the motor voltage to 5 volts.

2. Programming

The DualMotor1Amp module can control up to two motors called 0 and 1 respectively. Each motor has a
condition, power mode, direction, and speed. The condition is either on or off (i.e. freewheel.) The two power
modes are pulsed and continous. The two directions are forward and backward. The speed is a number
between 0 and 255 inclusive. There is one additional variable associated with each motor called ramp and a
few additional variables that are shared between the two motors.

Pulsed mode is standard motor control via pulse width modulation (PWM.) When the speed is 0, no pulses are
sent to the motor. When the speed is 255, the motor is full on. When the speed is 128, 50% duty cycle pulses
are sent to the motor. The direction bit, controls what direction current is pulsed into the motor.

In continuous mode, power is continuously applied either forward or backward through the motor. In
continuous mode, when the speed is 128, 50% duty cycle pulses are sent to the motor, where half the cycle is
sends current forward through the motor and the other half is sends current backward through the motor
(thereby cancelling out and resulting in a rotational speed of 0.) While continous mode consumes more power
than pulsed mode, it sometimes provides better motor speed control at slow speeds.

The ramp variable is used to slow down the rate at which motor speeds are changed. When the ramp variable
is non−zero, it specifies the rate at which motor speed changes (i.e. the speed ramp.) The ramp rate is
measured in ticks (1/3 of a bit time at 2400 baud, or 1/7200, or 138µS. A ramp rate of 1, means the pulse
widths will be changed every 138µS. A ramp rate of 100 means the pulse widths will be changed every 100 ×
138µS or every 13.8mS. This allows the user to slowly speed up and slow down the motor. Please note, that
ramp only applies to speed, changing the motor direction is immediate. (Sorry!)

For safety reasons, you might want the motors to shut off if the controlling program crashes. This is
accomplished with a variable called the failsafe delay variable which is shared between both motors. When
the failsafe delay variable is set to a non−zero value, it causes another variable called the failsafe counter to be

 DualMotor1Amp Module (Revision E) 39



initialized to the same value. Every 256 ticks (= 256 × 138µS = 35.5mS), the failsafe counter is decremented.
If the failsafe counter ever decrements to 0, it immediately turns off both motors without any ramping. Every
time a speed command is sent to the DualMotor1Amp module, the failsafe counter is reinitialed to contain the
failsafe delay variable. Thus, by occasionally sending commands that set the speed of either motor, the
failsafe counter can be kept non−zero. Alternatively, there is a command that just reinitializes the failsafe
counter without affecting the speed. The maximum amount of time between commands that reset the failsafe
counter is 255 × 35.5mS or approximately 9 seconds. If the controlling program crashes, it will stop sending
commands to the DualMotor1Amp module and eventually, the failsafe counter will decrement to zero and
stop both motors. There is yet a third variable called the failsafe error counter that is incremented each time a
failsafe shut down occurs. The failsafe error counter can be read with yet another command. Lastly, both
motors can be restarted by simply sending another command that sets the speed of either motor.

Finally, there is one other variable that is shared between the two motors called the prescaler. The prescaler is
3−bits wide and controls duty cycle width of the pulses are sent to the motor. The table below summarizes the
prescaler to duty cycle relationship:

Prescaler Duty Cycle Width

000 .5µS

001 1µS

010 2µS

011 4µS

100 8µS

101 16µS

110 32µS

111 64µS

The DualMotor1Amp commands are summarized in the table below:

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Set Quick Send 0 0 h h h h d m
Set motor m speed to hhhh hhhh
and direction to d (0=forward,
1=backward).

Set Low Send 0 1 l l l l d m
Set low order 4 bits of motor m
speed to ll and direction to d
(0=forward, 1=backward).

Set Ramp
Send 1 0 0 0 0 0 0 m Set the ramp for motor m to

rrrrrrrr (00000000=no ramp
(default)).Send r r r r r r r r

Set Failsafe
Send 1 0 0 0 0 0 1 0 Set the failsafe delay variable to

ffffffff (00000000=off (default)).Send f f f f f f f f

Reset Failsafe Send 1 0 0 0 0 0 1 1
Reset the failsafe counter to the
failsafe delay variable.

Set Speed
Send 1 0 0 0 0 1 d m Set motor m to speed ssssssss and

direction to d.Send s s s s s s s s

Set Mode Send 1 0 0 0 1 0 x m Set motor m mode to x (0=pulsed

 RoboBricks Introduction

 DualMotor1Amp Module (Revision E) 40



(default), 1=continuous).

Set Direction Send 1 0 0 0 1 1 d m
Set motor m direction to d
(0=forward (default), 1=reverse).

Set Prescaler Send 1 0 0 1 0 p p p
Set prescaler to ppp (000=fast,
111=slow (default)).

Read Failsafe
Send 1 0 0 1 1 0 0 0 Read the return the failsafe delay

variable ffffffff.Receive f f f f f f f f

Read Prescaler
Send 1 0 0 1 1 0 0 1

Read the return the prescaler ppp.
Receive 0 0 0 0 0 p p p

Read Speed
Send 1 0 0 1 1 0 1 m Read the return the speed ssssssss

for motor m.Receive s s s s s s s s

Read
Mode/Direction

Send 1 0 0 1 1 1 0 m Read the mode x (0=pulsed,
1=continuous) and direction d
(0=forward, 1=reverse) for motor
m.

Receive 0 0 0 0 0 0 x d

Read Ramp
Send 1 0 0 1 1 1 1 m Read and return the ramp rrrrrrrr

for motor m.Receive r r r r r r r r

Read Failsafe Errors
Send 1 0 1 0 0 0 0 0 Read and return the failsafe error

counter eeeeeeee. Reset the
counter.Receive e e e e e e e e

Read Failsafe
Counter

Send 1 0 1 0 0 0 0 1 Read and return the failsafe
counter cccccccc.Receive c c c c c c c c

Read Actual Speed
Send 1 0 1 0 0 0 1 m Read and return the actual speed

for motor mReceive e e e e e e e e

On/Off Send 1 0 1 0 0 1 o m
Set motor m to condition o (0=off
1=on)

Reset Send 1 0 1 0 1 0 0 0 Reset the entire motor controller

Shared CommandsSend 1 1 1 1 1 c c c Execute shared command ccc.

On power up, the DualMotor1Amp module sets all variables to zero. The motor modes default to pulsed
forward.

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the DualMotor1Amp module is shown below:

 RoboBricks Introduction

 3. Hardware 41



The parts list kept in a separate file −− dualmotor1amp.ptl.

3.2 Printed Circuit Board

The printed circuit files are listed below:

dualmotor1amp_back.png
The solder side layer.

dualmotor1amp_front.png
The component side layer.

dualmotor1amp_artwork.png
The artwork layer.

dualmotor1amp.gbl
The RS−274X "Gerber" back (solder side) layer.

dualmotor1amp.gtl
The RS−274X "Gerber" top (component side) layer.

dualmotor1amp.gal
The RS−274X "Gerber" artwork layer.

dualmotor1amp.drl
The "Excellon" NC drill file.

dualmotor1amp.tol

 RoboBricks Introduction

3. Hardware 42



The "Excellon" NC drill rack file.

4. Software

The DualMotor1Amp software is available as one of:

dualmotor1amp.ucl
The µCL source file.

dualmotor1amp.asm
The resulting human readable PIC assembly file.

dualmotor1amp.lst
The resulting human readable PIC listing file.

dualmotor1amp.hex
The resulting Intel® Hex file.

5. Issues

The following issues need to be considered:

Consider using the TI 754410 instead of the LM293.• 

Copyright (c) 2000−2005 by Wayne C. Gramlich. All rights reserved.

This is the Revision A verion of the IRDistance8 Module. The status of this project is finished.

 RoboBricks Introduction

 4. Software 43



IRDistance8 Module (Revision A)

Table of Contents

This document is also available in PDF format.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The IRDistance8 Module is used to connect up to 5 Sharp® GP2D12 IROD (InfraRed Optical Distance)
measuring sensors. The GP2D12 module provides an analog voltage that is proportional to the distance
(although not linearly.)

2. Programming

The IRDistance8 Module can enable zero, one or more of the AIROD's. For the ones that are enabled, it
continuously reads the distance values. To conserve power, only one AIROD is powered up at a time.

The IRDistance8 Module supports Module Interrupt Protocol for those lines that are being used as inputs. The
interrupt pending bit is set whenever the the formula:

L&(~I) | H&I | R&(~P)&I | F&P&(~I)

is non−zero, where:

I is the current input bits XOR'ed with the complement mask (C)• 
P is the previous value of I• 
L is the low mask• 
H is the high mask• 
R is the raising mask• 
F is the falling mask• 

and

~ is bit−wise complement• 
| is bit−wise OR• 
& is bit−wise AND• 

Once the interrupt pending bit is set, it must be explicitly cleared by the user.

In addition to the common shared commands and the shared interrupt commands, the AnalogIn4 Module

 IRDistance8 Module (Revision A) 44

http://www.sharp-usa.com/


supports following commands:

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read Distance
Send 0 0 0 0 0 0 0 b Read IROD b and respond with 8−bit value

ddddddddSend d d d d d d d d

Read Binary Values
Send 0 0 0 0 0 0 1 0 Return the binary values ab (after XOR'ing

with complement mask)Receive 0 0 0 0 0 0 a b

Read Raw Binary
Send 0 0 0 0 0 0 1 1 Return the raw binary values ab (no XOR with

complement mask)Receive 0 0 0 0 0 0 a b

Reset Send 0 0 0 0 0 1 0 0 Reset everything to zero

Read Enable Bit
Send 0 0 0 0 0 1 0 1

Read and return the enable bit e
Receive 0 0 0 0 0 0 0 e

Set Enable Bit Send 0 0 0 0 0 1 1 e Set enable bit to e

Read Complement Mask
Send 0 0 0 0 1 0 0 0

Return and return the complement mask cccc
Receive 0 0 0 0 0 0 c c

Read High Mask
Send 0 0 0 0 1 0 0 1

Return and return the high mask hh
Receive 0 0 0 0 0 0 h h

Read Low Mask
Send 0 0 0 0 1 0 1 0

Return and return the low mask ll
Receive 0 0 0 0 0 0 l l

Read Raising Mask
Send 0 0 0 0 1 0 1 1

Return and return the raising mask rr
Receive 0 0 0 0 0 0 r r

Read Falling Mask
Send 0 0 0 0 1 1 0 0

Return and return the falling mask ff
Receive 0 0 0 0 0 0 f f

Read High Threshold
Send 0 0 0 1 0 0 0 b Read and return high threshold for pin b of

hhhhhhhhReceive h h h h h h h h

Read Low Threshold
Send 0 0 0 1 0 0 1 b Read and return low threshold for pin bb of

llllllllReceive l l l l l l l l

Set High Threshold
Send 0 0 0 1 0 1 0 b

Set high threshold for pin b to hhhhhhhh
Send h h h h h h h h

Set Low Threshold
Send 0 0 0 1 0 1 1 b

Set low threshold for pin b to llllllll
Send l l l l l l l l

Set Complement MaskSend 0 0 1 0 0 0 c c Set complement mask to cc

Set High Mask Send 0 0 1 0 0 1 h h Set high mask to hh

Set Low Mask Send 0 0 1 0 1 0 l l Set low mask to ll

Set Raising Mask Send 0 0 1 0 1 1 r r Set raising mask to rr

Set Falling Mask Send 0 0 1 1 0 0 f f Set falling mask to ff

Read Interrupt Bits
Send 1 1 1 0 1 1 1 1 Return the interrupt pending bit p and the

interrupt enable bit e.Receive 0 0 0 0 0 0 e p

Set Interrupt CommandsSend 1 1 1 1 0 c c c Set Interrupt Command ccc.

Shared Commands Send 1 1 1 1 1 c c c Execute common shared command ccc

 RoboBricks Introduction

 IRDistance8 Module (Revision A) 45



3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the IRDistance8 Module is shown below:

The parts list kept in a separate file −− irdistance8.ptl.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

irdistance8_back.png
The solder side layer.

irdistance8_front.png
The component side layer.

irdistance8_artwork.png
The artwork layer.

irdistance8.gbl

 RoboBricks Introduction

 3. Hardware 46



The RS−272X "Gerber" back (solder side) layer.
irdistance8.gtl

The RS−272X "Gerber" top (component side) layer.
irdistance8.gal

The RS−272X "Gerber" artwork layer.
irdistance8.drl

The "Excellon" NC drill file.
irdistance8.tol

The "Excellon" tool rack file.

4. Software

The software for the IRDistance8 is listed below:

irdistance8.ucl
The µCL file for IRDistance8.

irdistance8.asm
The assembly file for IRDistance8.

irdistance8.hex
The Intel® Hex file.

irdistance8.lst
The listing file for IRDistance8.

5. Issues

The following issues need to be addressed:

U1 needs to be moved up by at least .05", preferably .10". The chip interferres with VR1.• 

Contemplate rotating VR1 by 90 degrees to provide more space.• 
Contemplate moving C2 up between N4 and U1 to provide more space for VR1. C2 can be moved right by
.05".

• 

Think about moving R1 and R2 up a little.• 

Copyright (c) 2005 by Wayne C. Gramlich. All rights reserved.

This is the Revision D verion of the IREdge4 module. The status of this project is finished.

 RoboBricks Introduction

 4. Software 47



IREdge4 Module (Revision D)

Table of Contents

This document is also available in PDF format.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The IREdge4 module can connect to up to 4 Photo Sensors (combined light emitter with photodetector.) The
inputs are done using analog to digital converters rather than just binary inputs. There are 4 potentiometers to
control the current throught the light emitters and 4 pententionmeters to control the gain of the returned signal.

2. Programming

The IREdge4 module is continuously reading the analog inputs from its four A/D pins. The controlling
program can just read the results of the digital conversion, or it can have the result down converted into a
single binary bit. Each pin has has a threshold high and threshold low register that is used for the down
conversion. Whenever the digital conversion exceeds the high threshold register, the down coversion results in
a 1. Whenever the digital conversion is lower than the low threshold register, the down conversion results in a
0. A hysterisis effect can be introduced by having some spread between the high and low threshold values.

After the down coversions to binary bits, the result is 4−bits of binary data. A complement mask can be used
to selectively invert individual bits in the 4−bit data.

The IREdge4 module supports the Interrupt Protocol for those lines that are being used as inputs. The
interrupt pending bit is set whenever the the formula:

L&(~I) | H&I | R&(~P)&I | F&P&(~I)

is non−zero, where:

I is the current input bits XOR'ed with the complement mask (C)• 
P is the previous value of I• 
L is the low mask• 
H is the high mask• 
R is the rising mask• 
F is the falling mask• 

and

 IREdge4 Module (Revision D) 48



~ is bit−wise complement• 
| is bit−wise OR• 
& is bit−wise AND• 

Once the interrupt pending bit is set, it must be explicitly cleared by the user.

In addition to the common shared commands and the shared interrupt commands, the IREdge4 RoboBrix
supports following commands:

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read Pin
Send 0 0 0 0 0 0 b b Read pin bb and respond with 8−bit value

vvvvvvvvReceive v v v v v v v v

Read Binary Values
Send 0 0 0 0 0 1 0 0 Return the binary values abcd (after XOR'ing

with complement mask)Receive 0 0 0 0 a b c d

Read Raw Binary
Send 0 0 0 0 0 1 0 1 Return the raw binary values abcd (no XOR

with complement mask)Receive 0 0 0 0 a b c d

Reset Send 0 0 0 0 0 1 1 0 Reset everything to zero

Read Complement
Mask

Send 0 0 0 0 1 0 0 0
Return the complement mask cccc

Receive 0 0 0 0 c c c c

Read High Mask
Send 0 0 0 0 1 0 0 1

Return the high mask hhhh
Receive 0 0 0 0 h h h h

Read Low Mask
Send 0 0 0 0 1 0 1 0

Return the high mask llll
Receive 0 0 0 0 l l l l

Read Rising Mask
Send 0 0 0 0 1 0 1 1

Return the rising mask rrrr
Receive 0 0 0 0 r r r r

Read Falling Mask
Send 0 0 0 0 1 1 0 0

Return the falling mask ffff
Receive 0 0 0 0 f f f f

Read High Threshold
Send 0 0 0 1 0 0 b b

Return high threshold for pin bb of hhhhhhhh
Receive h h h h h h h h

Read Low Threshold
Send 0 0 0 1 0 1 b b

Return low threshold for pin bb of llllllll
Receive l l l l l l l l

Set High Threshold
Send 0 0 0 1 1 0 b b

Set high threshold for pin bb to hhhhhhhh
Send h h h h h h h h

Set Low Threshold
Send 0 0 0 1 1 1 b b

Set low threshold for pin bb to llllllll
Send l l l l l l l l

Set Complement MaskSend 0 0 1 0 c c c c Set complement mask to cccc

Set High Mask Send 0 1 0 0 h h h h Set high mask to hhhh

Set Low Mask Send 0 1 0 1 l l l l Set low mask to llll

Set Rising Mask Send 0 1 1 0 r r r r Set rising mask to rrrr

Set Falling Mask Send 0 1 1 1 f f f f Set falling mask to ffff

Read Interrupt Bits
Send 1 1 1 0 1 1 1 1 Return the interrupt pending bit p and the

interrupt enable bit e.Receive 0 0 0 0 0 0 e p

 RoboBricks Introduction

 IREdge4 Module (Revision D) 49



Set Interrupt
Commands

Send 1 1 1 1 0 c c c Set Interrupt Command ccc.

Shared Commands Send 1 1 1 1 1 c c c Execute common shared command ccc

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the IREdge4 RoboBrix is shown below:

The parts list kept in a separate file −− iredge4.ptl.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

 RoboBricks Introduction

 3. Hardware 50



iredge4_back.png
The solder side layer.

iredge4_front.png
The component side layer.

iredge4_artwork.png
The artwork layer.

iredge4.gbl
The RS−272X "Gerber" back (solder side) layer.

iredge4.gtl
The RS−272X "Gerber" top (component side) layer.

iredge4.gal
The RS−272X "Gerber" artwork layer.

iredge4.drl
The "Excellon" NC drill file.

iredge4.tol
The "Excellon" tool rack file.

4. Software

The IREdge4 software is available as one of:

iredge4.ucl
The µCL source file.

iredge4.asm
The resulting human readable PIC assembly file.

iredge4.lst
The resulting human readable PIC listing file.

iredge4.hex
The resulting Intel® Hex file.

5. Issues

Any fabrication iusses will be listed here.

Copyright (c) 2001−2005 by Wayne C. Gramlich. All rights reserved.

This is the Revision A verion of the IRremote1 module. The status of this project is work in progress.

 RoboBricks Introduction

 4. Software 51



IRRemote1 Robobrick (Revision C)

Table of Contents

This document is also available as a PDF document.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The IRRemote1 module is used to send and received IR signals. It currently takes signals from Sony IR
remotes. The transmisssion facility is a little underdeveloped (i.e. non−existant) at the moment. The IR
Receiver is the Sharp GP1U26X.

2. Programming

The basic operation is to send a query to the IRRemote1 RoboBrick to return the last two bytes of IR remote
command.

The IRRemote1 module supports RoboBrick Interrupt Protocol. The interrupt pending bit is set whenever a
command has been received. Once the interrupt pending bit is set, it must be explicitly cleared by the user.

The IRRemote1 RoboBrick supports both the standard shared commands and the shared interrupt commands
in addition to the following commands:

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read Inputs
Send 0 0 0 0 0 0 0 0

Return input values abcdefghijkReceive0 0 0 0 a b c d

Receivee f g h i j k l

Read Interrupt Bits
Send 1 1 1 0 1 1 1 1 Return the interrupt pending bit p and the

interrupt enable bit e.Receive0 0 0 0 0 0 e p

Set Interrupt Bit
Commands

Send 1 1 1 1 0 c c c Execute shared set interrupt command ccc.

Shared Commands Send 1 1 1 1 1 c c c Execute shared command ccc.

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

 IRRemote1 Robobrick (Revision C) 52

http://www.sony.com/


3.1 Circuit Schematic

The IRRemote1 RoboBrick schematic is shown below:

The parts list kept in a separate file −− irremote1.ptl.

3.2 Printed Circuit Board

The available printed circuit boards are listed below:

irremote1_back.png
The solder side layer.

irremote1_front.png
The component side layer.

irremote1_artwork.png
The artwork layer.

irremote1.gbl
The RS−274X "Gerber" back (solder side) layer.

irremote1.gtl
The RS−274X "Gerber" top (component side) layer.

irremote1.gal
The RS−274X "Gerber" artwork layer.

irremote1.drl
The "Excellon" NC drill file.

irremote1.tol
The "Excellon" NC drill rack file.

 RoboBricks Introduction

3. Hardware 53



4. Software

The IRREMOTE1 software is available as one of:

irremote1.ucl
The µCL source file.

irremote1.asm
The resulting human readable PIC assembly file.

irremote1.lst
The resulting human readable PIC listing file.

irremote1.hex
The resulting Intel® Hex file that can be fed into a PIC12C5xx programmer.

5. Issues

Any fabrication issues are listed here.

Copyright (c) 2000−2002 by Wayne C. Gramlich. All rights reserved.

This is the Revision A verion of the IO8 Module. The status of this project is finished.

 RoboBricks Introduction

 4. Software 54



IO8 Module (Revision A)

Table of Contents

This document is also available in PDF format.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The IO8 Module is used to connect up to 5 Sharp® GP2D12 IROD (InfraRed Optical Distance) measuring
sensors. The GP2D12 module provides an analog voltage that is proportional to the distance (although not
linearly.)

2. Programming

The IO8 Module provides up to 8 lines of analog input, digital input, and/or digital output under user control.
For analog input, 10−bits of analog to digital conversion are permitted.

Module Interrupt Protocol for those lines that are being used as inputs. The interrupt pending bit is set
whenever the the formula:

L&(~I) | H&I | R&(~P)&I | F&P&(~I)

is non−zero, where:

I is the current input bits XOR'ed with the complement mask (C)• 
P is the previous value of I• 
L is the low mask• 
H is the high mask• 
R is the raising mask• 
F is the falling mask• 

and

~ is bit−wise complement• 
| is bit−wise OR• 
& is bit−wise AND• 

Once the interrupt pending bit is set, it must be explicitly cleared by the user.

In addition to the common shared commands and the shared interrupt commands, the AnalogIn4 Module

 IO8 Module (Revision A) 55

http://www.sharp-usa.com/


supports following commands:

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read Distance
Send 0 0 0 0 0 0 0 b Read IROD b and respond with 8−bit value

ddddddddSend d d d d d d d d

Read Binary Values
Send 0 0 0 0 0 0 1 0 Return the binary values ab (after XOR'ing

with complement mask)Receive 0 0 0 0 0 0 a b

Read Raw Binary
Send 0 0 0 0 0 0 1 1 Return the raw binary values ab (no XOR with

complement mask)Receive 0 0 0 0 0 0 a b

Reset Send 0 0 0 0 0 1 0 0 Reset everything to zero

Read Enable Bit
Send 0 0 0 0 0 1 0 1

Read and return the enable bit e
Receive 0 0 0 0 0 0 0 e

Set Enable Bit Send 0 0 0 0 0 1 1 e Set enable bit to e

Read Complement Mask
Send 0 0 0 0 1 0 0 0

Return and return the complement mask cccc
Receive 0 0 0 0 0 0 c c

Read High Mask
Send 0 0 0 0 1 0 0 1

Return and return the high mask hh
Receive 0 0 0 0 0 0 h h

Read Low Mask
Send 0 0 0 0 1 0 1 0

Return and return the low mask ll
Receive 0 0 0 0 0 0 l l

Read Raising Mask
Send 0 0 0 0 1 0 1 1

Return and return the raising mask rr
Receive 0 0 0 0 0 0 r r

Read Falling Mask
Send 0 0 0 0 1 1 0 0

Return and return the falling mask ff
Receive 0 0 0 0 0 0 f f

Read High Threshold
Send 0 0 0 1 0 0 0 b Read and return high threshold for pin b of

hhhhhhhhReceive h h h h h h h h

Read Low Threshold
Send 0 0 0 1 0 0 1 b Read and return low threshold for pin bb of

llllllllReceive l l l l l l l l

Set High Threshold
Send 0 0 0 1 0 1 0 b

Set high threshold for pin b to hhhhhhhh
Send h h h h h h h h

Set Low Threshold
Send 0 0 0 1 0 1 1 b

Set low threshold for pin b to llllllll
Send l l l l l l l l

Set Complement MaskSend 0 0 1 0 0 0 c c Set complement mask to cc

Set High Mask Send 0 0 1 0 0 1 h h Set high mask to hh

Set Low Mask Send 0 0 1 0 1 0 l l Set low mask to ll

Set Raising Mask Send 0 0 1 0 1 1 r r Set raising mask to rr

Set Falling Mask Send 0 0 1 1 0 0 f f Set falling mask to ff

Read Interrupt Bits
Send 1 1 1 0 1 1 1 1 Return the interrupt pending bit p and the

interrupt enable bit e.Receive 0 0 0 0 0 0 e p

Set Interrupt CommandsSend 1 1 1 1 0 c c c Set Interrupt Command ccc.

Shared Commands Send 1 1 1 1 1 c c c Execute common shared command ccc

 RoboBricks Introduction

 IO8 Module (Revision A) 56



3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the IO8 Module is shown below:

The parts list kept in a separate file −− io8.ptl.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

io8_back.png
The solder side layer.

io8_front.png
The component side layer.

io8_artwork.png
The artwork layer.

io8.gbl
The RS−272X "Gerber" back (solder side) layer.

io8.gtl
The RS−272X "Gerber" top (component side) layer.

io8.gal
The RS−272X "Gerber" artwork layer.

io8.drl

 RoboBricks Introduction

 3. Hardware 57



The "Excellon" NC drill file.
io8.tol

The "Excellon" tool rack file.

4. Software

The software for the IO8 is listed below:

io8.ucl
The µCL file for IO8.

io8.asm
The assembly file for IO8.

io8.hex
The Intel® Hex file.

io8.lst
The listing file for IO8.

5. Issues

Any fabrication issues will be listed here.

Copyright (c) 2005 by Wayne C. Gramlich. All rights reserved.

This is the Revision A version of the LaserHolder1 Module. The status of this project is work in progress.

 RoboBricks Introduction

 4. Software 58



LaserHolder1 Module (Revision A)

Table of Contents

This document is also available as a PDF document.

1. Introduction• 
2. Hardware

2.1 Schematic♦ 
2.2 Printed Circuit Board♦ 

• 

3. Issues• 

1. Introduction

The LaserHolder1 module is used to mechanically support a small laser pointer for the Sense3 module. Two
of these modules are needed to accomplish the task. Both modules have the center hole enlarged just enough
to accept the desired small laser pointer. The four outside corner holes of the LaserHolder1 align with the four
holes on the Sense3 module. Some all thread, nuts, washers and lock washers are used to stack two
LaserHolder1 modules behind the Sense3 module to hold the laser pointer. Finally, the LaserHolder1 is used
to electically connect the Sense3 through the ScanPanel module, which, in turn, is mounted on top of a small
hobby servo.

2. Hardware

...

2.1 Schematic

The schematic is shown below:

The parts list is kept in a separate file.

2.2 Printed Circuit_Board

The printed circuit files are listed below:

laserholder1_back.png
The solder side layer.

 LaserHolder1 Module (Revision A) 59



laserholder1_front.png
The component side layer.

laserholder1_artwork.png
The artwork layer.

laserholder1.gbl
The RS−274X "Gerber" back (solder side) layer.

laserholder1.gtl
The RS−274X "Gerber" top (component side) layer.

laserholder1.gal
The RS−274X "Gerber" artwork layer.

laserholder1.drl
The "Excellon" NC drill file.

laserholder1.tol
The "Excellon" tool rack file.

3. Issues

Any fabrication issues will be listed here.

Copyright (c) 2004 by Wayne C. Gramlich. All rights reserved.

This is the Revision A version of the LCD32 RoboBrick. The status of this project is work in progress.

 RoboBricks Introduction

 3. Issues 60



LCD32 Module (Revision E)

Table of Contents

This document is also available in PDF format.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The LCD32 module can display a total 4 lines of 16 characters each, of which only 2 lines are visible at a
time. The characters are displayed using a 5×7 dot matrix. There is a mechancal switch labeled LINES on the
LCD32 module that switches between displaying lines 1−2 and lines 3−4. The LCD32 module is based upon
the inexpensive Lumex® LCM−S01602DTR/M 2×16 liquid crystal display (LCD) module available from
both Digikey® and Mouser The LCD32 module has a small trim potentiometer that allows you adjust the display contrast.

The LCD32 can be used in two ways:

User Mode
In user mode, the LCD32 is being used an output device under user control. All serial data
communication is between the master connected on N1 and the LCD32 module. In this mode,
connectors N2 and N3 are left disconnected. A pull−up on one of the N2 connector pins allows the
LCD32 module to determine that it is in this mode.

Debug Mode
In debug mode, the LCD32 module is inserted between a master brick and a slave brick. The master
brick is connected on N1 and the slave brick is connected on N3. In addition, there is another
connection from a "debug" port on the slave brick and connector N2 on the LCD32. In this mode, the
master brick does not even know that the LCD32 is present. However, the slave brick can detect that
LCD32 is present and output additional debugging information to the LCD32. There are two
sub−modes of operation in this mode −− 1) slave sending data to the master and 2) slave sending data
to the LCD32. The LCD32 module determines this by examining the "select" line on connector N2.

The various paths for serial data are summarized in the table below:

Description
Mode Select Master Out Slave Out LCD32 RX

(S1) (S0) (N1−5) (N3−4) (U1−5)

Master to LCD32 (User
Mode)

1 x
LCD32 TX
(U1−6)

x (Master In)
(N1−4)

Master In
(N3−4)

Slave to LCD32 (Debug
Mode)

0 1 idle (high) Master In (N1−4)
Slave In
(N3−5)

Slave to Master (Debug
Mode)

0 0 Slave In (N3−5)Master In (N1−4)idle (high)

 LCD32 Module (Revision E) 61



The LCD32 module is meant to be used in conjunction with the LCD32Holder (Rev. A) board which carries
the actual LCM−201602DTR/M and plugs onto the top of the LCD32 module.

2. Programming

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Back Space Send 0 0 0 0 1 0 0 0 Move cursor to the left.

Line Feed Send 0 0 0 0 1 0 1 0 Advance currsor to beginning of next line; clear the next line

Form Feed Send 0 0 0 0 1 1 0 0 Clear entire display and place cursor at home

Carriage Return Send 0 0 0 0 1 1 0 1 Return cursor to beginning of line

Character 32 to 63 Send 0 0 1 x x x x x Enter the character on the display and advance cursor.

Character 64 to 127Send 0 1 x x x x x x Enter the character on the display and advance cursor.

Line Set Send 1 0 0 0 0 0 l l Move cursor to line ll

Line Clear Send 1 0 0 0 0 1 l l Move cursor to line ll and clear it

Cursor Mode Set Send 1 0 0 0 1 0 v b Cursor mode is set (v=1 visible cursor) (b=1 blinking cursor)

Cursor Mode Read
Send 1 0 0 0 1 1 0 0

Read cursor mode (v=1 visible cursor) (b=1 blinking cursor)
Receive0 0 0 0 0 0 v b

Character Read
Send 1 0 0 0 1 1 0 1

Read the current character ccc cccc; advance cursor
Receive0 c c c c c c c

Line Read
Send 1 0 0 0 1 1 1 0

Read the current line ll
Receive0 0 0 0 0 0 l l

Position Read
Send 1 0 0 0 1 1 1 1

Read the current character position pppp
Receive0 0 0 0 p p p p

Position Set Send 1 0 0 1 p p p p Move cursor to character position pppp

Position Set Send 1 0 1 0 p p p p Move cursor to character position pppp; clear to end of line

Shared CommandsSend 1 1 1 1 1 c c c Execute shared command ccc.

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the LCD32 RoboBrick is shown below:

 RoboBricks Introduction

 2. Programming 62



The parts list kept in a separate file −− lcd32.ptl.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

lcd32_back.png
The solder side layer.

lcd32_front.png
The component side layer.

lcd32_artwork.png
The artwork layer.

lcd32.gbl
The RS−272X "Gerber" back (solder side) layer.

lcd32.gtl
The RS−272X "Gerber" top (component side) layer.

lcd32.gal
The RS−272X "Gerber" artwork layer.

lcd32.drl
The "Excellon" NC drill file.

lcd32.tol
The "Excellon" tool rack file.

 RoboBricks Introduction

3. Hardware 63



4. Software

The LCD32 software is available as one of:

lcd32.ucl
The µCL source file.

lcd32.asm
The resulting human readable PIC assembly file.

lcd32.lst
The resulting human readable PIC listing file.

lcd32.hex
The resulting Intel® Hex file.

5. Issues

The following issues came up:

The connector N2 in not properly aligned with connectors N3 and N4 on LCD32Holder−C. Move N2
right .05" to get them aligned. This will also provide a little extra space on the left side of the board.

• 

Copyright (c) 2001−2005 by Wayne C. Gramlich. All rights reserved.

This is the Revision C version of the LCD32Holder module. The status of this project is work in progress.

 RoboBricks Introduction

 4. Software 64



LCD32Holder Module (Revision C)

Table of Contents

This document is also available in PDF format.

1. Introduction• 
2. Hardware

2.1 Circuit Schematic♦ 
2.2 Printed Circuit Board♦ 

• 

3. Issues• 

1. Introduction

The LCD32HOLDERHolder module adapts the Lumex LCM−S01602DTR/M to the LCD32HOLDER
module.

2. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

2.1 Circuit Schematic

The schematic for the LCD32HOLDERHolder module is shown below:

 LCD32Holder Module (Revision C) 65



The parts list kept in a separate file −− lcd32holder.ptl.

2.2 Printed Circuit Board

The printed circuit board files are listed below:

lcd32holder_back.png
The solder side layer.

lcd32holder_front.png
The component side layer.

lcd32holder_artwork.png
The artwork layer.

lcd32holder.gbl
The RS−272X "Gerber" back (solder side) layer.

lcd32holder.gtl
The RS−272X "Gerber" top (component side) layer.

lcd32holder.gal
The RS−272X "Gerber" artwork layer.

lcd32holder.drl
The "Excellon" NC drill file.

lcd32holder.tol
The "Excellon" tool rack file.

3. Issues

The following fabrication issues came up:

The stand−off next to N3 just happens to land on top of a surface mount resistor on the LCD board.
Move it up by .15".

• 

Copyright (c) 2001−2005 by Wayne C. Gramlich. All rights reserved.

This is the Revision F verion of the LED10 module. The status of this project is work in progress.

 RoboBricks Introduction

2. Hardware 66



Led10 Module (Revision F)

Table of Contents

This document is also available in PDF format.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The LED10 module provides the ability to output 10 bits of data to 10 LED's on board.

2. Programming

The Led4 Module supports the standard shared commands in addition to the following commands:

Command Send/Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Write Lower Send 0 0 0 f g h i j Write fghij out to the lower 5 LED's.

Write Upper Send 0 0 1 a b c d e Write abcde out to the upper 5 LED's.

Bit Clear Send 0 1 0 0 b b b b
Turn LED bbbb off.
MSB (bbbb=1001) LSB (bbbb=0000)

Bit Set Send 0 1 0 1 b b b b Turn LED bbbb on.

Bit Toggle Send 0 1 1 0 b b b b Toggle LED bbbb.

Bit Read
Send 0 1 1 1 b b b b Read status of LED bb.

Receive r r r 0 0 0 0 b LED state is b. Blink rate is rrr

Read All
Send 1 0 0 0 0 0 0 0 Read all ten LED's.

Receive 0 0 0 a b c d e Upper five LED state is abcde

Receive 0 0 0 f g h i j Lower five LED state is fghij

Read Lower
Send 1 0 0 0 0 0 0 1 Read lower five LED's.

Receive 0 0 0 f g h i j Lower five LED state is fghij

Read Upper
Send 1 0 0 0 0 0 1 0 Read upper five LED's.

Receive 0 0 0 a b c d e Upper five LED state is abcde

Blink Rate Set

Send 1 0 0 0 0 0 1 1 Set Blink Rate

Send r r r 0 b b b b
Set LED bbbb blink rate to rrr.
On (rrr=000) Slow (rrr=001)
Medium(rrr=100) Fast (rrr=111)

Increment LED's Send 1 0 0 1 b b b b Increment LED's starting at bit bbbb

 Led10 Module (Revision F) 67



Decrement LED's Send 1 0 1 0 b b b b Decrement LED's starting at bit bbbb

Power Level ModeSend 1 0 1 1 l l l l
Set LED's to power level llll;
All off (llll=000), All on (llll>=1010)

Shared CommandsSend 1 1 1 1 1 a b c Send shared command abc to Module.

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the Led10 Module is shown below:

The parts list kept in a separate file −− led10.ptl.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

led10_back.png
The solder side layer.

led10_front.png
The component side layer.

led10_artwork.png
The artwork layer.

led10.gbl
The RS−274X "Gerber" back (solder side) layer.

 RoboBricks Introduction

 3. Hardware 68



led10.gtl
The RS−274X "Gerber" top (component side) layer.

led10.gal
The RS−274X "Gerber" artwork layer.

led10.drl
The "Excellon" NC drill file.

led10.tol
The "Excellon" tool rack file.

4. Software

The Led10 software is available as one of:

led10.ucl
The µCL source file.

led10.asm
The resulting human readable PIC assembly file.

led10.lst
The resulting human readable PIC listing file.

led10.hex
The resulting Intel® Hex file.

5. Issues

Any fabrication issues are listed here.

Copyright (c) 2000−2004 by Wayne C. Gramlich. All rights reserved.

This is the Revision A verion of the Line3 module. The status of this project is finished.

 RoboBricks Introduction

 4. Software 69



Line3 Module (Revision A)

Table of Contents

This document is also available in PDF format.

1. Introduction4• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The Line3 module has 3 infrared (IR) sensors for sensing lines on flat surfaces. There are sensor that straddle
the line and one that can detect when the line simply ends.

2. Programming

{more goes here.}

In addition to the common shared commands and the shared interrupt commands, the Line3 RoboBrix
supports following commands:

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read Interrupt Bits
Send 1 1 1 0 1 1 1 1 Return the interrupt pending bit p and the

interrupt enable bit e.Receive 0 0 0 0 0 0 e p

Set Interrupt CommandsSend 1 1 1 1 0 c c c Set Interrupt Command ccc.

Shared Commands Send 1 1 1 1 1 c c c Execute common shared command ccc

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the Line3 RoboBrix is shown below:

 Line3 Module (Revision A) 70



The parts list kept in a separate file −− line3.ptl.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

line3_back.png
The solder side layer.

line3_front.png
The component side layer.

line3_artwork.png
The artwork layer.

line3.gbl
The RS−272X "Gerber" back (solder side) layer.

line3.gtl
The RS−272X "Gerber" top (component side) layer.

line3.gal
The RS−272X "Gerber" artwork layer.

line3.drl
The "Excellon" NC drill file.

 RoboBricks Introduction

3. Hardware 71



line3.tol
The "Excellon" tool rack file.

4. Software

The Line3 software is available as one of:

line3.ucl
The µCL source file.

line3.asm
The resulting human readable PIC assembly file.

line3.lst
The resulting human readable PIC listing file.

line3.hex
The resulting Intel® Hex file.

5. Issues

Any fabrication iusses will be listed here.

Copyright (c) 2001−2004 by Wayne C. Gramlich. All rights reserved.

This is the revision B version of the MicroBrain8 module. The status of this project is finished.

 RoboBricks Introduction

 4. Software 72



MicroBrain8 Module (Revision C)

Table of Contents

This document is also available as a PDF document.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 
3.3 Construction Instructions♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The MicroBrain8 module is a controller module that can control up to 8 sensor or actuator modules. It is
controlled by any microcontroller that is pin compatible with the Parallax a Basic Stamp 2® It has two
terminals that can be connect to a battery between 6 and 9 volts. It has an on board 5 volt voltage regulator to
provide power to the other sensor and actuator modules. The is a connector that can be connected to a DB9
connector and used to communicate with a controlling PC via RS−232 voltage levels.

2. Programming

The MicroBrain11 works with any processor that is pin compatible with the Basic Stamp 2 from Parallax.
This includes several products from Parallax (e.g. Basic Stamp 2, Basic Stamp2SX, Javalin) and some
products from other companies such as (e.g. OOPIC−C from Savage Innovations, etc.)

The required pin−outs from the chip are:

Pin Label Description Pin Label Description

1 SOUT Serial Out 24 VIN Unregulated > 6 Volts

2 SIN Serial In 23 VSS Ground (0 Volts)

3 ATN Attention 22 RES# Reset

4 VSS Ground (0 Volts)21 VDD Regulated +5 Volts

5 P0 Data Pin 0 20 P15 Data Pin 15

6 P1 Data Pin 1 19 P14 Data Pin 14

7 P2 Data Pin 2 18 P13 Data Pin 13

8 P3 Data Pin 3 17 P12 Data Pin 12

9 P4 Data Pin 4 16 P11 Data Pin 11

10 P5 Data Pin 5 15 P10 Data Pin 10

11 P6 Data Pin 6 14 P9 Data Pin 9

12 P7 Data Pin 7 13 P8 Data Pin 8

 MicroBrain8 Module (Revision C) 73

http://www.parallax.com/


All 16 pins from the microcontroller processor are brought out to the connectors N1−N8. You are free to do
whatever you want with these pins; after all, you own the board. You are not required to exclusively talk to
RoboBRiX modules.

Having said that, we expect that most people will want to use the MicroBrain8 to operate other RoboBRiX
modules. The pins from the processor chip are routed to connectors N1 through N8 in pairs as shown in the
table below:

Pin Out Pin In Connector (Pin 4)
Connector

(Pin 5)

P0 P1 N8 N8

P2 P3 N7 N7

P4 P5 N6 N6

P6 P7 N5 N5

P8 P9 N1 N1

P10 P11 N2 N2

P12 P13 N3 N3

P14 P15 N4 N4

Notice that they are always organized in pairs of the form Pn=Output and Pn+1=Input. The same information,
but presented from the point of view of the connector is listed below:

Connector Input Output

N1 (Top) P8 P9

N2 P10 P11

N3 P12 P13

N4 P14 P15

N5 P6 P7

N6 P4 P5

N7 P2 P3

N8 (Bottom) P0 P1

We may eventually put a few examples of programming the MicroBrain8 here. Basically, it is programmed
using the Parallax Basic for the Basic Stamp 2.

    ' Even numbered pins inputs and odd number pins are outputs.
    ' (Remember for the BS2, 1=output and 0=input.)
    dirs = $aaaa

    ' Set all outputs to high:
    high 1
    high 3
    high 5
    high 7
    high 9
    high 11
    high 13
    high 15

    ' To copy a Switch8−B (on N2) to LED10−B (on N1):

 RoboBricks Introduction

 MicroBrain8 Module (Revision C) 74



    switches var byte
    loop:
        ' Send command 0 (Read switches) to Switch8−B:
        serout 11, 396, [0]
        ' Receive the switch readings from Switch8−B:
        serin 10, 396, [switches]
        ' Send switch values to LED10−B:
        serout 9, 396, [switches]
        goto loop

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the MicroBrain8 RoboBrick is shown below:

 RoboBricks Introduction

 3. Hardware 75



The parts list kept in a separate file −− microbrain8.ptl.

 RoboBricks Introduction

 3. Hardware 76



3.2 Printed Circuit Board

The printed circuit board files are listed below:

microbrain8_back.png
The solder side layer.

microbrain8_front.png
The component side layer.

microbrain8_artwork.png
The artwork layer.

microbrain8.gbl
The RS−274X "Gerber" back (solder side) layer.

microbrain8.gtl
The RS−274X "Gerber" top (component side) layer.

microbrain8.gal
The RS−274X "Gerber" artwork layer.

microbrain8.gml
The RS−274X "Gerber" mask layer.

microbrain8.drl
The "Excellon" NC drill file.

microbrain8.tol
The "Excellon" tool rack file.

3.2 Construction Instructions

The construction instructions are kept in a separate file document to be a little more printer friendly.

4. Software

The software for the MicroBrain8 is developed by the user.

5. Issues

Any fabrication issues that come up will be listed here.

Copyright (c) 2001−2003 by Wayne C. Gramlich. All rights reserved.

This is the Revision A verion of the Multiplex8 Module. The status of this project is that it has been replaced
by the PIC876Hub10 Module.

 RoboBricks Introduction

3. Hardware 77



Multiplex8 Module (Revision A)

Table of Contents

This document is also available as a PDF document.

1. Introduction• 
2. Hardware

2.1 Circuit Schematic♦ 
2.2 Printed Circuit Board♦ 

• 

3. Issues• 

1. Introduction

This module is used to multiplex the UART on a master module amongst 8 slave modules.

2. Hardware

The hardware consists of a circuit schematics and a printed circuit board.

2.1 Circuit Schematic

The schematic for the Multiplex8 Module is shown below:

 Multiplex8 Module (Revision A) 78



 RoboBricks Introduction

 Multiplex8 Module (Revision A) 79



The parts list kept in a separate file −− multiplex8.ptl.

2.2 Printed Circuit Board

multiplex8_back.png
The solder side layer.

multiplex8_front.png
The component side layer.

multiplex8_artwork.png
The artwork layer.

multiplex8.gbl
The RS−274X "Gerber" back (solder side) layer.

multiplex8.gtl
The RS−274X "Gerber" top (component side) layer.

multiplex8.gal
The RS−274X "Gerber" artwork layer.

multiplex8.drl
The "Excellon" NC drill file.

multiplex8.tol
The "Excellon" NC drill rack file.

3. Issues

Any construction issues are listed here:

Copyright (c) 2000−2005 by Wayne C. Gramlich. All rights reserved.

This is the revision D version of the PICBrain11 module. The status of this project is finished.

 RoboBricks Introduction

2. Hardware 80



PICBrain11 Module (Revision D)

Table of Contents

This document is also available as a PDF document.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 
3.3 Download Cable♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The PICBrain11 module can control up to 11 sensor and actuator modules. It uses a PIC16F876A
microcontroller from MicroChip®. There is on board RS−232 level conversion circuitry so that the
PICBrain11 can be directly connected to a PC serial port. There is an on−board 5 volt regulator for supplying
regulated voltage to other sensor and actuator modules.

2. Programming

You are free to program the PICBrain11 in any fashion you so desire. There are many compilers and
assemblers available for the PIC microcontroller family. A search of Google® for terms such as "PIC Basic
Compiler" and "PIC C Compiler" will yield many possible compilers. The MPLab® software from
Microchip® provides an excellent assembler that is free.

All 22 I/O pins of the the PICBRain11 are available on connectors N1 through N11. There is no requirement
that you use the pins to only talk to the sensor and actuator modules. For example, RC4 and RC3 can be used
to access an I2C bus with the addition of external pull up resistors.

However, we do expect many people to want to connect to sensor/actuator modules. This is done by providing
a routine that can bit bang (a technical term) serial protocol in and out on a pair of pins at 2400 baud using an
8N1 (1 start bit, 8 data bits, No parity, 1 stop bit).

The table below shows the mapping of I/O register bits to connector pins:

Pin Location Direction

RA0 N2 Pin 5 Input

RA1 N2 Pin 4 Output

RA2 N4 Pin 5 Input

RA3 N4 Pin 4 Output

RA4 N6 Pin 5 Input

RA5 N6 Pin 4 Output

RB0 N7 Pin 5 Input

 PICBrain11 Module (Revision D) 81

http://www.microchip.com/
http://google.com/


RB1 N7 Pin 4 Output

RB2 N5 Pin 5 Input

RB3 N5 Pin 4 Output

RB4 N3 Pin 5 Input

RB5 N3 Pin 4 Output

RB6 N1 Pin 5 Input

RB7 N1 Pin 4 Output

RC0 N9 Pin 5 Input

RC1 N9 Pin 4 Output

RC2 N8 Pin 5 Input

RC3 N10 Pin 5 Input

RC4 N10 Pin 4 Output

RC5 N8 Pin 4 Output

RC6 N11Pin 4 Output

RC7 N11 Pin 5 Input

The table below is the inverse table that shows the the connector pins to register bit mapping:

Connector Pin 4 Pin 5

N1 RB7 RB6

N2 RA1 RA0

N3 RB5 RB4

N4 RA3 RA2

N5 RB3 RB2

N6 RA5 RA4

N7 RB1 RB0

N8 RC5 RC2

N9 RC1 RC0

N10 RC4 RC3

N11 RC6 RC7

Note that most connectors are of the form where pin 5 is connected to PortN@BitN, where BitN is even and
pin 4 is connected to PortN@BitN+1. Connects N8, N10, and N11 are the exceptions to this rule. N11 is
connected to the TX and RX pins of the PIC16F876A hardware USART. N8 is connected to the SCA and
SCL pins PIC16F876A I2C support hardware.

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the PICBrain11 module is shown below:

 RoboBricks Introduction

 3. Hardware 82



The parts list kept in a separate file −− picbrain11.ptl.

 RoboBricks Introduction

 3. Hardware 83



3.2 Printed Circuit Board

The printed circuit board files are listed below:

picbrain11_back.png
The solder side layer.

picbrain11_front.png
The component side layer.

picbrain11_artwork.png
The artwork layer.

picbrain11.gbl
The RS−274X "Gerber" back (solder side) layer.

picbrain11.gtl
The RS−274X "Gerber" top (component side) layer.

picbrain11.gal
The RS−274X "Gerber" artwork layer.

picbrain11.drl
The "Excellon" NC drill file.

picbrain11.tol
The "Excellon" tool rack file.

3.3 Download Cable

More and more computers are shipping without serial ports. If your computer does not have a serial port, it
will be necessary to purchase a USB to serial adaptor. Some converters appear to be better than others. In
general, we have been pretty satisfied with adaptors based on FTDI chips. You may have to experiment until
you find one that works for your system.

There are two download cables for the PICBrain11 −− the 4−wire cable and the 3−wire cable. The 4−wire
cable is identical to the cable used for the MicroBrain8. The 3−wire cable is the same as the 4−wire cable,
with the exception that the DTR signal is not hooked up. Both these cables end in a six pin 1×6 male header
where pins 3 and 5 have been removed to provide polarization when plugged into N15. The two different
cables are described in the two tables below:

4−wire Download Cable

DB9
Direction

N15 PIC

Label Pin Label Pin Label Pin

RX 2 <== SOUT 1 RC6/TX 17

TX 3 ==> SIN 2 RC7/RX 18

DTR 4 ==> ATN 4 MCLR 1

GND 5 <=> GND 6 VSS 8,19

RTS 7 Short 7 to 8

DSR 8 Short 8 to 7

3−wire Download Cable

DB9
Direction

N15 PIC

Label Pin Label Pin Label Pin

 RoboBricks Introduction

3. Hardware 84



RX 2 <== SOUT 1 RC6/TX 17

TX 3 ==> SIN 2 RC7/RX 18

GND 5 <=> GND 6 VSS 8,19

RTS 7 Short 7 to 8

DSR 8 Short 8 to 7

Why are two different cables needed? The answer starts with the Parallax® Basic Stamp. Parallax decided to
use DTR in a very non−standard fashion. They use DTR for reset. The MicroBrain8 must adhere to this
Parallax "standard".

The goal for the PICBrain11 is to use the same identical cable as the Parallax cable. Thus, on the PICBrain11,
DTR is also used for reset. Unfortunately, most terminal emulators assert DTR as part of their normal
behavior. (DTR means Data Terminal Ready, which is properly asserted by a terminal emulator.) This causes
the PICBrain11 to jam in the reset state. The more advanced terminal emulators allow you to independently
set the DTR pin; alas, Microsoft's Hyperterminal is not one of them. My recommended solution is to
disconnect DTR for these non DTR settable terminal emulators. Hence, the two cable flavors −− Parallax
(4−wire) and Dumb Terminal Emulator (3−wire).

The next release of our µCL programming language has a full fledged IDE (Integrated Developement
Environment) that talks to the PICBrain11. This developement environment uses the Parallax cable (4−wire)
connected to the PICBrain11. Whenever the uCL IDE needs to reset the PICBrain11, it asserts DTR to force a
reset. Thus, it would be wrong to remove the DTR circuitry on PICBrain11.

3.4 Using the HyperTerminal Terminal Emulator

MicroSoft Windows XP, ships with the HyperTerminal terminal emulator. This terminal emulator can be used
to talk to the PICBrain11.

To start HyperTerminal, perform the following:

[Start] => [All Programs] => [Accessories] => [Communications] => [HyperTerminal]

Give the session a name like "RoboBRiX". COM1 is the usual port to talk to.

For Port Settings, select the following:

Port Settings

Baud Rate 19200

Data Bits 8

Parity None

Stop Bits 1

Flow Control None

Now go to the tool bar and select [File] => [Properties]. Select the [Settings] tab and click on the [ASCII
Setup...] button. Set line delay to 50 milliseconds.

HyperTerminal Configuration is now complete.

 RoboBricks Introduction

3. Hardware 85



Plug the 3−wire cable into PICBrain11 and the other end into a serial port of the PC running Windows XP.
Power up the PICBrain11. If everything is working properly, you should see "PICBrain11−C" followed by "4
3 2 1" in the HyperTerminal window. Press the [Enter] key before the boot loader outputs the final "1" to get
it to enter the command prompt.

The boot loader commands are described in the next section.

In order to download a program into the PICBrain11 using HyperTerminal you need to do the following. First,
generate an Intel .hex file that contains the program to be downloaded. Next, get the PICBrain11 to the point
where a ">" command prompt is showing. Finally use the [Transfer] => [Send Text File ...] command to force
the .hex file to be downloaded into the program memory of the PICBrain11. See the ":" command for the boot
loader for a little more detail.

4. Software

There is a boot loader preprogrammed into the PICBrain11.

You talk to the boot loader via the serial cable and some sort of terminal emulator running on your preferred
host platform (e.g. HyperTerminal for various versions of Microsoft® Windows operating system, minicom
for Linux, etc.) Configure your terminal emulator for 19200 baud, 8N1 (1 start bit, 8 data bits, No parity, 1
stop bit) and no hardware or software flow control.

When the PICBrain11 Boot loader is powered up it it prints an announcement message of "PICBrain11−C'.
Then it counts down for 4 seconds "4 3 2 1". By typing an [Enter] key during the count down, the command
prompt is entered. If no [Enter] is depressed, control is transferred to address 0008 after 4 seconds have
elapsed.

The command program has the commands listed below. All numbers are in hexadecimal, upper and lower
case is unimportant, and commands must be initiated by typing an [Enter] key.

V
Print version number of software (i.e. "1.0")

K n
Set the socket to n, where n must be between 1 and A inclusive.

I
Talk to the module on the socket specified by the K command (see above.) Print out the module
identifier information. The first 24 bytes are in hexadecimal followed by two strings −− the module
name and module vendor.

C aa
Perform a clock adjust on the selected socket (see K command above.) aa should be specified as 00.
This command will ensure that the clock speed of the selected module is tweaked to be as close to
optimal as possible.

P pp
Show the page of program memory at pp00 to ppFF. For the PIC16F876, pp can range from 00 to 1F.

E rrrr cc
Show the cc bytes of data from file registers starting at rrrr. For the PIC16F876A, rrrr can range from
0000 to 01FF. Not all register locations are active.

S rrrr vv
Set register rrrr to vv. As with the E command (see above), rrrr can range from 0000 to 01FF.

G aaaa

 RoboBricks Introduction

 4. Software 86



Transfer control to address aaaa.
X

Transfer control to address 0008.
R cc

Send byte cc to the currently selected module (see K command above.) Print up to two bytes of
response back. FC is returned for a timeout.

: ...
Program one line of Intel® Hex file format into program memory. All memory from 0004 through
1800 can be programmed. Any attempts to program outside the range are silently ignored. At the end
of the download, the number of errors is printed. It should be Err=00. If not, the address where the
problem occured is listed. Be sure that your terminal emulator is configured to delay about 50
milliseconds after each line is sent.

The boot loader is written in a programming language called µCL. It currently resides in code bank 3 of the
PICBrain11 starting at address 1800. The following files are available:

picbrain11.ucl
The µCL source code for the PICBrain11 boot loader.

picbrain11.asm
The PICBrain11 boot loader assembly code listing

picbrain11.lst
The PICBrain11 boot loader listing file.

picbrain11.hex
The µCL PICBrain11 boot loader Intel® Hex file.

In addition, there is a program that provides some simple robototic behaviors:

robobrix_test.ucl
The µCL source code for the Robobrix_Test test program.

robobrix_test.asm
The Robobrix_Test test program assembly code listing.

robobrix_test.lst
The Robobrix_Test test program listing file.

robobrix_test.hex
The µCL Robobrix_Test test program Intel® Hex file.

The documentation for this program is follows:

There are 11 sockets labeled N1, N2, ..., N9, NA, NB.

There are three simple DualMotor1Amp behaviors:

DualMotor1Amp plugged into N2:
Turns on left motor in forward direction.

DualMotor1Amp plugged into N3:
Turns on right motor in forward direction.

DualMotor1Amp plugged into N4:
Turns on both left and right motors in forward direction.

The next set of behaviors requires the DualMotor1Amp to be plugged into N1:

 RoboBricks Introduction

 4. Software 87



Proximity2 plugged into N2:
Implements a follow behavior. It does nothing until it sees some object in front of it. Then it turns
toward the object and trys to keep a fixed distance from the object.

IRProximity2 plugged into N3:
This is "attack" behavior. I find it to be pretty lame. It waits until an object shows up and runs after it
until it runs into it. t is not smart enough to stop. Frankly, this is the lamest behavior in the program
right now.

IRProximity2 plugged intO N4:
This is called push−pull behavior. The robot tries to to stay a fixed distance from an object. If object
comes closer to the robot, it will back away from the object. Alas, its forward motion is a little too
timid right now, so it is mostly a backup robot.

IRPRoximity2 plugged into N5:
This is an object avoider. The jittery nature of the sensor means that it tends to go into circles pretty
easily.

IRProximity2 plugged into N6:
This is a right wall follower. The right IR LED needs to be canted about 45 degrees to the right. The
trim pot should be cranked way up. It turns left when sees something in front with the left sensor, it
turns left; otherwise, it tries to stay in a zone with the wall on the right using the right sensor.
With Servo4 plugged into NA (i.e. N10):

The gripper is plugged into servo0 and the wrist is plugged into servo1. The two trim pots a
jumpered on the left. The first trim pot specifies the wrist position when gripping an object.
The second trim pot specifies the wrist position when the gripper is searching for an object.
While the robot is following a wall, it opens and closes the gripper. If the gripper closes on
something, it stays closed until a "corner" is found; then it releases it.

5. Issues

The following fabrication issues came up:

There is no D1 any more (the shorting diode.) D2 should be renamed to D1 everywhere.◊ 
The boot loader is chewing up 2K; it should be much smaller.◊ 

Copyright (c) 2001−2005 by Wayne C. Gramlich. All rights reserved.

This is the Revision B verion of the Reckon2 Module. The status of this project is work in progress.

 RoboBricks Introduction

 5. Issues 88



Reckon2 Module (Revision B)

Table of Contents

This document is also available in PDF format.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 
3.3 Construction Instructions♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The Reckon2 module is used to manuver a robot. It can contol two motors in "differential steering" mode.
Each motor needs to have a shaft encoder with a quadrature output. If there is enough resolution on the shaft
encoder and the wheels are not too "squishy", it is possible to keep pretty accurate track of a robot's location
and bearing using deduced reckoning. (Note: deduced reckoning is abbreiated as ded. reckoning and is now
frequently refered to by the term "dead reckoning".)

2. Programming

There is no programming yet.

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the Reckon2 Module is shown below:

 Reckon2 Module (Revision B) 89



 RoboBricks Introduction

 Reckon2 Module (Revision B) 90



The parts list kept in a separate file −− reckon2.ptl.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

reckon2_back.png
The solder side layer.

reckon2_front.png
The component side layer.

reckon2_artwork.png
The artwork layer.

reckon2.gbl
The RS−274X "Gerber" back (solder side) layer.

reckon2.gtl
The RS−274X "Gerber" top (component side) layer.

reckon2.gal
The RS−274X "Gerber" artwork layer.

reckon2.drl
The "Excellon" NC drill file.

reckon2.tol
The "Excellon" tool rack file.

4. Software

There is no software yet.

5. Issues

The following fabrication issues need to be addressed:

Switch over to a resonator.• 
There is too much interferance between the heat sink and diodes.• 
Capacitor C7 does not fit.• 
Capacitor C4 would be nicer if .2" lead spacing were used.• 

Copyright (c) 2005 by Wayne C. Gramlich. All rights reserved.

This is the Revision B version of the RCInput8 module. The status of this project is work in progress.

 RoboBricks Introduction

3. Hardware 91



RCInput8 Module (Revision B)

Table of Contents

This document is also available as a PDF document.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The RCInput8 module is used to read the outputs from a standard 8 channel Radio Control unit.

2. Programming

There is no programming specification for the Sonar1 RoboBrick yet.

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the Sonar1 RoboBrick is shown below:

 RCInput8 Module (Revision B) 92



The parts list kept in a separate file −− rcinput8.ptl.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

rcinput8_back.png
The solder side layer.

rcinput8_front.png
The component side layer.

rcinput8_artwork.png
The artwork layer.

rcinput8.gbl
The RS−274X "Gerber" back (solder side) layer.

 RoboBricks Introduction

3. Hardware 93



rcinput8.gtl
The RS−274X "Gerber" top (component side) layer.

rcinput8.gal
The RS−274X "Gerber" artwork layer.

rcinput8.drl
The "Excellon" NC drill file.

rcinput8.tol
The "Excellon" tool rack file.

4. Software

The RCInput8 software is available as one of:

rcinput8.ucl
The µCL source file.

rcinput8.asm
The resulting human readable PIC assembly file.

rcinput8.lst
The resulting human readable PIC listing file.

rcinput8.hex
The resulting Intel® Hex file that can be fed into a PIC12C5xx programmer.

5. Issues

The fabrication issues are listed here.

Copyright (c) 2004−2005 by Wayne C. Gramlich. All rights reserved.

This is the Revision A version of the ScanBase Module. The status of this project is work in progress.

 RoboBricks Introduction

 4. Software 94



ScanBase Module (Revision A)

Table of Contents

This document is also available as a PDF document.

1. Introduction• 
2. Hardware

2.1 Schematic♦ 
2.2 Printed Circuit Board♦ 

• 

3. Issues• 

1. Introduction

The ScanBase module provides the electrical connection to the ScanPanel module, which, in turn, provides
the electrical connection to the Sense3 module.

2. Hardware

...

2.1 Schematic

The schematic is shown below:

 ScanBase Module (Revision A) 95



The parts list is kept in a separate file.

2.2 Printed Circuit_Board

The printed circuit files are listed below:

scanbase_back.png
The solder side layer.

scanbase_front.png
The component side layer.

scanbase_artwork.png
The artwork layer.

scanbase.gbl
The RS−274X "Gerber" back (solder side) layer.

scanbase.gtl
The RS−274X "Gerber" top (component side) layer.

scanbase.gal
The RS−274X "Gerber" artwork layer.

scanbase.drl
The "Excellon" NC drill file.

scanbase.tol
The "Excellon" tool rack file.

 RoboBricks Introduction

2. Hardware 96



3. Issues

Any fabrication issues will be listed here.

Copyright (c) 2004 by Wayne C. Gramlich. All rights reserved.

This is the Revision A version of the ScanPanel Module. The status of this project is work in progress.

 RoboBricks Introduction

 3. Issues 97



ScanPanel Module (Revision B)

Table of Contents

This document is also available as a PDF document.

1. Introduction• 
2. Hardware

2.1 Schematic♦ 
2.2 Printed Circuit Board♦ 

• 

3. Issues• 

1. Introduction

The ScanPanel module is meant to be attached to a standard servo arm to provide a convenient location to
attach other modules for scanning purposes. Currently, this module provides the specialized connections
between Sense3 and the ScanBase.

Servo arms typically have 3 or 4 holes in a row on each arm. These holes are typically spaced 3 millimeters
apart. The initial distance from the center of the servo arm is not standardized. In order to accomadate as
many different servo arms as possible, the ScanPanel modules has three sets of holes as shown in the table
below:

Angles (degrees)Hole distances

30, 210 6, 9, 12, 15

90, 270 7, 10, 13, 16

150, 330 8, 11, 14, 17

Using a cross style horn, the holes should line up one of the hole sets above.

2. Hardware

...

2.1 Schematic

The schematic is shown below:

 ScanPanel Module (Revision B) 98



The parts list is kept in a separate file.

2.2 Printed Circuit_Board

The printed circuit files are listed below:

scanpanel_back.png
The solder side layer.

scanpanel_front.png
The component side layer.

scanpanel_artwork.png
The artwork layer.

scanpanel.gbl
The RS−274X "Gerber" back (solder side) layer.

scanpanel.gtl
The RS−274X "Gerber" top (component side) layer.

scanpanel.gal
The RS−274X "Gerber" artwork layer.

scanpanel.drl
The "Excellon" NC drill file.

scanpanel.tol
The "Excellon" tool rack file.

 RoboBricks Introduction

2. Hardware 99



3. Issues

Any fabrication issues will be listed here.

Copyright (c) 2004 by Wayne C. Gramlich. All rights reserved.

This is the Revision A verion of the Sense3 Module. The status of this project is work in progress.

 RoboBricks Introduction

 3. Issues 100



Sense3 Module (Revision A)

Table of Contents

This document is also available in PDF format.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 
3.3 Construction Instructions♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The Sense3 module has three sensors −− an infrared (IR) distance sensor, a sonar distance sensor, and a laser
bearing finder. The IR and sonar sensors need no external support, whereas the laser bearing finder needs
pieces of reflective tape placed at the correct height at known locations in the environment. The Sense3
module is intended to be placed on top of a common hobby server to provide approximately 180 degrees of
sensor sweeping.

This module uses a number of helper modules to accomplish its task. These modules are:

ScanBase
This module is used to electically connect to the Sense3 module. This module is connected to the
robot base and does not sweep back and forth. The hobby servo is electrically connected to this
module.

ScanPanel
This module is mecahnically mounted directly to the top of a hobby servo horn. This module provides
electrical connections between ScanBase and Sense3 modules. In addition, one of the LaserHolder1
modules is plugged into this module to provide power for the Laser pointer.

LaserHolder1
This module is used to mechanically mount and align the small laser pointer so that its laser beam
comes out of the appropriate hole of the Sense3 module. Two of these modules. are required plus the
Sense3 form a single unit that slips right into the appropriate female connectors on the ScanPanel.

Servo_Adaptor_0.4
A couple of these modules provide a way to mechanically attach the hobby servo to the robot base.

2. Programming

There is no programming yet.

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

 Sense3 Module (Revision A) 101



3.1 Circuit Schematic

The schematic for the Sense3 Module is shown below:

The parts list kept in a separate file −− sense3.ptl.

Ground♦ 
Regulated 5 Volts♦ 
Unregulated +6 Volts♦ 
Serial In♦ 

 RoboBricks Introduction

3. Hardware 102



Serial Out♦ 
Debug Port(2)♦ 

3.2 Printed Circuit Board

The printed circuit board files are listed below:

sense3_back.png
The solder side layer.

sense3_front.png
The component side layer.

sense3_artwork.png
The artwork layer.

sense3.gbl
The RS−274X "Gerber" back (solder side) layer.

sense3.gtl
The RS−274X "Gerber" top (component side) layer.

sense3.gal
The RS−274X "Gerber" artwork layer.

sense3.drl
The "Excellon" NC drill file.

sense3.tol
The "Excellon" tool rack file.

4. Software

There is no software yet.

5. Issues

The following issues need to be addressed:

C3 is mis−labeled in the artwork layer.♦ 
The hole for the laser beam is too small.♦ 
The alignment holes are too small for any reasonable hardware.♦ 
The alignment holes are too close, move further out.♦ 
R10 is too close to Q3.♦ 
Contemplate putting VR1 down flat♦ 
C2 and C1 are too close to VR1.♦ 
C2 and C1 are too close to VR1.♦ 
C4 would be better if the leads were .2".♦ 
Move GP2D120 up to better center it.♦ 
Label the wire colors for the GP2D120 connection to N4.♦ 
Make lead space for C6 be .2".♦ 
Think about using polypropelyne [sp?] tubing for sensor shade. Reposition holes to fit tubing
snuggly.

♦ 

Copyright (c) 2005 by Wayne C. Gramlich. All rights reserved.

This is the Revision I version of the Servo4 module. The status of this project is finished.

 RoboBricks Introduction

3. Hardware 103



Servo4 Module (Revision I)

Table of Contents

This document is also available as a PDF document.

1. Introduction ]• 
2. Hardware Configuration• 
3. Programming• 
4. Hardware

4.1 Circuit Schematic♦ 
4.2 Printed Circuit Board♦ 

• 

5. Software• 
6. Issues• 

1. Introduction

The Servo4 module allows for the control of up to 4 hobby grade servos. It can be configured in the following
ways:

Pure Servo Mode
In pure servo mode, it is expected that up to 4 unmodified servos are attached to the board. The four
servos can be independently controlled. There is current feedback on all four servos.

Differential Steering Mode
In differential steering mode, the module can control up to 4 servos. The first two servos are expected
to be servos that have modified been for continuous rotation. The second two servos are regular
unmodified servos. The first two servos have current feedback and the second two servos do not.
There are two trim pots that are used to set the no rotation condition for the first two servos.

MSSC Compatibility Mode
MSSC stands for Mini−Serial Servro Controller. The MSSC board is quit popular. In MSSC mode, up
to 4 servos can be controlled per board. In MSSC compatibility mode, the servos are directly
controlled from a host computer via an RS−232 serial port. Up to 16 boards can be chained together
to provide control for up to 64 servos. The two trim pots are used to set the "address" of the board.

As you can see, this board is quite flexible. Please see the section on Hardware Configuration to see how the
jumpers for each configuration.

2. Hardware Configuration

Up to four RC servos are connected to connectors N2 (servo 0) through N5 (servo3). Each connector has the
following pin definitions:

Pin Location Description

1 Left
Servo control signal (varies between 0 and 5
volts)

2 Center 5 Volts

3 Right Ground (0 Volts)

 Servo4 Module (Revision I) 104



On many servos, the black wire is the ground wire. You will have to check you servo documentation to be
absolutely sure though.

The connection to the controlling module occurs via N1 in the upper left corner. Alternatively, in MSSC
mode, the connection is via N12.

Power for the servos comes from N6, the blue two terminal connector in the upper right corner. Connect a
power source of 6−12 volts to connector N6, where the upper terminal is the positive terminal ('+') and the the
lower terminal is negative ('−'). The on board regulator, will regulate the voltage down to 5 volts for the
servos.

The hardware configuration for each mode is summarized in the table below:

Mode
Jumpers Trim Pots

N7 N8 N10 N11 R4 R5

Pure Servo Mode
Right
(2−3)

Right
(2−3)

Right
(2−3)

Off Unused Unused

Differential Steering Mode Left (1−2) Left (1−2)
Right
(1−2)

Off Servo 0 Stop
Servo 1
Stop

Differential Steering
Calibration Mode

Left (1−2) Left (1−2) Left (1−2) Off Servo 0 Stop
Servo 1
Stop

MSSC Compatibility Mode Left (1−2) Left (1−2)
Right
(1−2)

On
Address
A2−A3

Address
A4−A5

In differential steering calibration mode, N11 is jumpered to the left and it causes yellow LED D1 to light. It
causes both servos 0 and 1 to be enabled. The value of trim pot R5 to be sent to servo 0 and trim pot R6 to be
sent to servo 1. The purpose of calibration mode is to allow you to adjust the two modified servos that are
connected to servo 0 and servo 1 and adjust them until they stop rotating. This frees the programmer from
having to experiment to find the `position' number for each servo that corresponds to each servo being
motionless. The values of the stop value are read out using the Read Current Draw command for servo 2 and
3.

In MSSC (Mini Serial Servo Controller) mode, all power comes in from the power source connected to N6
(the blue 2−terminal block.) No cable is connected to N1. In order to talk to the Servo4 module, a cable is
constructed from a two pin male header and a female 9−pin DB9 connector. The connections are summerized
in the table below:

From To Description

DB9 Pin 3 2−pin Header Pin 1 Host Transmitted Data

DB9 Pin 5 2−pin Header Pin 2 Ground (0 Volts)

DB9 Pin 7 DB9 Pin 8 RTS to CTS

DB9 Pin 4 DB9 Pin 1 and DB9 Pin 6DTR to DSR and DCD

In MSSC (Mini Serial Servo Controller) mode, the servo board controls 4 servos at a time. An address is
6−bits long and is represented as a decimal number between 0 and 63 inclusive as shown below:

aa bb ss

 RoboBricks Introduction

 Servo4 Module (Revision I) 105



where

aa
is the two high order address bits and is set by trim pot R5.

bb
is the two middle order address bits and is set by trim pot R6.

ss
is the servo specifier and selects between servo 0 through servo 3.

The trim pots are set according to the following table:

Value Position

00 7:00 (full counter clockwise)

01 10:00

10 2:00

11 5:00 (full clockwise)

Thus, to set the MSSC address to servo bank 0−3, both trim pots are turned full counter clockwise. Similarly,
to set the MSSC address to servo bank 60−63, both trim pots are turned full clockwise.

3. Programming

The Servo4 module can independently control up to 4 servos. Each servo has 1) an enable bit and 2) a current
position. The position is represented as an 8−bit number. Some experimentation may be needed to determine
how the 8−bit numbers correspond to actual servo positions. All servos are initialized to have the enable flags
off.

In MSSC (Mini Serial Servo Controller) mode, commands are of the form:

nn,ppp[cr]

where

nn
is a decimal number between 0 and 63, inclusive, that specifies a servo to position.

ppp
is a decimal number between 0 and 255, inclusive, that specifies the position that the servo is to go to.

[cr]
is a carriage return character (e.g. decimal ASCII 13) that causes the command to take effect.

An example of a few MSSC commands are shown below, where there is an implicit carriage return after every
line:

0,128
1,0
255,63,255

Note that the last command consists of three comma separated numbers; only the last two numbers are used.
Lastly, the receipt of the carriage return automatically enables the servos.

 RoboBricks Introduction

 3. Programming 106



The Servo4 commands are summarized in the table below:

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

MSSC Command
Execute (Carriage
Return)

Send 0 0 0 0 1 1 0 1
Set position using previously sent MSSC
servo number and position. Enable all four
servos.

MSSC Next Number
(',')

Send 0 0 1 0 1 1 0 0 Start next MSSC number.

MSSC Decimal Digit
('0'−'9')

Send 0 0 1 1 d d d d
Next decimal digit of MSSC number,
where dddd=0000 corresponds to '0' and
dddd=1001 is a '9'.

MSSC Ignore Send 0 0 x x x x x x
If 00xx xxxx does not match one of the
previous MSSC commands, it is simply
ignored.

Set High Send 0 1 h h h h s s
Set high order 4 bits of servo ss to hhhh and
set the remaining 4 low order bits to zero.

Set Low Send 1 0 l l l l s s
Set the low order 4 bits of servo ss position
to llll.

Set Enable and Position
Send 1 1 0 0 0 e s s Select servo ss and set its position to

ppppppp and enable flag to e.Send p p p p p p p p

Set Enable Flag Only Send 1 1 0 0 1 e s s Select servo ss and set its enable flag to e.

Read Position
Send 1 1 0 1 0 0 s s Return the current position pppppppp for

servo ss.Receivep p p p p p p p

Read Enable
Send 1 1 0 1 0 1 s s

Return the enable bit e for servo ss.
Receive0 0 0 0 0 0 0 e

Read Enables
Send 1 1 0 1 1 0 0 0 Return the enable flags eeee for all four

servos.Receive0 0 0 0 e e e e

Set Enables
Send 1 1 0 1 1 0 0 1

Set enable flags for all four servos to eeee.
Send 0 0 0 0 e e e e

Read Current Draw
Send 1 1 0 1 1 1 s s Return the aaaaaaaa current draw for servo

ss.Receivea a a a a a a a

Shared Commands Send 1 1 1 1 1 c c c Execute shared command ccc.

The Servo4 module does not know the minimum and maximum extent for each servo. This has to be
determined by experimentation.

4. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

4.1 Circuit Schematic

The schematic for the Servo4 module is shown below:

 RoboBricks Introduction

 4. Hardware 107



The parts list kept in a separate file −− servo4.ptl.

4.2 Printed Circuit Board

The printed circuit board files are listed below:

servo4_back.png
The solder side layer is shown below:

servo4_front.png
The component side layer is shown below:

servo4_artwork.png

 RoboBricks Introduction

4. Hardware 108



The artwork layer is shown below
servo4.gbl

The RS−274X "Gerber" back (solder side) layer.
servo4.gtl

The RS−274X "Gerber" top (component side) layer.
servo4.gal

The RS−274X "Gerber" artwork layer.
servo4.drl

The "Excellon" NC drill file.
servo4.tol

The "Excellon" tool rack file.

5. Software

The Servo4 software is available as one of:

servo4.ucl
The µCL source file.

servo4.asm
The resulting human readable PIC assembly file.

servo4.lst
The resulting human readable PIC listing file.

servo4.hex
The resulting Intel® Hex file.

6. Issues

The following issues have come up:

In my zeal to remove the L2940 voltage regulator from the design, I totally screwed up. The 10K
pull−up resistors exceed the VIH for control pins.

• 

Copyright (c) 2000−2005 by Wayne C. Gramlich. All rights reserved.

This is the Revision C version of the Serial1 Module. The status of this project is work in progress.

 RoboBricks Introduction

 5. Software 109



Serial1 Module (Revision A)

Table of Contents

This document is also available as a PDF document.

1. Introduction• 
2. Hardware

2.1 Circuit Schematic♦ 
2.2 Printed Circuit Board♦ 

• 

3. Issues• 

1. Introduction

The Serial1 Module is a Module that connects a master Module to a computer via a stanadard 4−wire
telephone cord extension.

2. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

2.1 Circuit Schematic

The schematic for the Serial1 Module is shown below:

The parts list kept in a separate file −− serial1.ptl.

 Serial1 Module (Revision A) 110



2.2 Printed Circuit Board

The printed circuit board files are listed below:

serial1_back.png
The solder side layer is shown below:

serial1_front.png
The component side layer is shown below:

serial1_artwork.png
The optional artwork layer is shown below:

serial1.gbl
The RS−274X "Gerber" back (solder side) layer.

serial1.gtl
The RS−274X "Gerber" top (component side) layer.

serial1.gal
The RS−274X "Gerber" artwork layer.

serial1.drl
The "Excellon" NC drill file.

serial1.tol
The "Excellon" NC drill rack file.

3. Issues

The following fabrication issues need to be addressed:

Use electrolytic capacitors instead of tantalum capacitors.• 
Perhaps move the connector in some.• 

Copyright (c) 2000−2005 by Wayne C. Gramlich. All rights reserved.

This is the Revision C version of the Sonar8 module. The status of this project is work in progress.

 RoboBricks Introduction

2. Hardware 111



Sonar8 Module (Revision C)

Table of Contents

This document is also available as a PDF document.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The Sonar8 module is used to send and receive ultra sonic sonar pulses using the Robot Electronics SRF04
sonar ranging module. Up to 8 SRF04's can be controlled by this module.

2. Programming

There is no programming specification for the Sonar1 RoboBrick yet.

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the Sonar1 RoboBrick is shown below:

 Sonar8 Module (Revision C) 112

http://www.robot-electronics.co.uk/
http://www.robot-electronics.co.uk/htm/srf04tech.htm


The parts list kept in a separate file −− sonar8.ptl.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

sonar8_back.png
The solder side layer.

sonar8_front.png
The component side layer.

sonar8_artwork.png
The artwork layer.

sonar8.gbl
The RS−274X "Gerber" back (solder side) layer.

 RoboBricks Introduction

3. Hardware 113



sonar8.gtl
The RS−274X "Gerber" top (component side) layer.

sonar8.gal
The RS−274X "Gerber" artwork layer.

sonar8.drl
The "Excellon" NC drill file.

sonar8.tol
The "Excellon" tool rack file.

4. Software

The Sonar8 software is available as one of:

sonar8.ucl
The µCL source file.

sonar8.asm
The resulting human readable PIC assembly file.

sonar8.lst
The resulting human readable PIC listing file.

sonar8.hex
The resulting Intel® Hex file that can be fed into a PIC12C5xx programmer.

5. Issues

The following issues came up during fabrication:

Connector N11 does not interfere with the Ping sensor plugged into N12. Thus, N11 can be moved to
the right edge of the board.

• 

The capacitor C3 is a problem in its current location. First, it interferes with the PIC16F688 in socket
U1. Second, it interferes with the Ping when it is plugged into N12. Third, there is currently only
room for an 8mm round capacitor.

• 

Seriously consider making R3−R10 vertical, to allow U1 to be placed into a veritical mode. This
should clear up space for the power supply and allow a larger C3 capacitor.

• 

Copyright (c) 2001−2002 by Wayne C. Gramlich. All rights reserved.

This is the Revision F verion of the Switch8 Module. The status of this project is finished.

 RoboBricks Introduction

 4. Software 114



Switch8 Module (Revision F)

Table of Contents

This document is also available as a PDF document.

1. Introduction• 
2. Programming• 
3. Hardware

3.1 Circuit Schematic♦ 
3.2 Printed Circuit Board♦ 

• 

4. Software• 
5. Issues• 

1. Introduction

The Switch8 Module allows you to read up to 8 digital inputs. An interrupt can be generated on the states of
selected inptus.

2. Programming

The basic operation is to send a query to the Switch8 Module to read the 4 bits of data. The programmer can
download a complement mask to cause any of the bits to be complemented prior to reading.

The Switch8 Module supports Module Interrupt Protocol. The interrupt pending bit is set whenever the the
formula:

L&(~I) | H&I | R&(~P)&I | F&P&(~I)]

is non−zero, where:

I is the current input bits XOR'ed with the complement mask (C)• 
P is the previous value of I• 
L is the low mask• 
H is the high mask• 
R is the raising mask• 
F is the falling mask• 

and

~ is bit−wise complement• 
| is bit−wise OR• 
& is bit−wise AND• 

Once the interrupt pending bit is set, it must be explicitly cleared by the user.

The Switch8 Module supports both the standard shared commands and the shared interrupt commands in
addition to the following commands:

 Switch8 Module (Revision F) 115



Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read Inputs
Send 0 0 0 0 0 0 0 0 Return input values abcdefgh (after XOR'ing

with complement mask)Receivea b c d e f g h

Read Complement
Mask

Send 0 0 0 0 0 0 0 1
Return complement mask cccccccc

Receivec c c c c c c c

Read Low Mask
Send 0 0 0 0 0 0 1 0

Return low mask llllllll
Receivel l l l l l l l

Read High Mask
Send 0 0 0 0 0 0 1 1

Return high mask hhhhhhhh
Receiveh h h h h h h h

Read Raising Mask
Send 0 0 0 0 0 1 0 0

Return raising mask rrrrrrrr
Receiver r r r r r r r

Read Falling Mask
Send 0 0 0 0 0 1 0 1

Return falling mask ffffffff
Receivef f f f f f f f

Read Raw
Send 0 0 0 0 1 0 0 0 Return raw data abcd (without XOR'ing with

complement mask)Receivea b c d e f g h

Set Complement
Mask

Send 0 0 0 0 1 0 0 1
Set complement mask to cccccccc

Send c c c c c c c c

Set Low Mask
Send 0 0 0 0 1 0 1 0

Set low mask to llllllll
Send l l l l l l l l

Set High Mask
Send 0 0 0 0 1 0 1 1

Set high mask to hhhhhhhh
Send h h h h h h h h

Set Raising Mask
Send 0 0 0 0 1 1 0 0

Set raising mask to rrrrrrrr
Send r r r r r r r r

Set Falling Mask
Send 0 0 0 0 1 1 0 1

Set falling mask to ffffffff
Send f f f f f f f f

Read Interrupt Bits
Send 1 1 1 0 1 1 1 1 Return the interrupt pending bit p and the

interrupt enable bit e.Receive0 0 0 0 0 0 e p

Set Interrupt
Commands

Send 1 1 1 1 0 c c c Set Interrupt Command ccc.

Shared CommandsSend 1 1 1 1 1 c c c Execute Shared Command ccc.

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the Switch8 Module is shown below:

 RoboBricks Introduction

 3. Hardware 116



The parts list kept in a separate file −− switch8.ptl.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

switch8_back.png
The solder side layer.

switch8_front.png
The component side layer.

switch8_artwork.png
The artwork layer.

switch8.gbl
The RS−274X "Gerber" back (solder side) layer.

switch8.gtl
The RS−274X "Gerber" top (component side) layer.

switch8.gal
The RS−274X "Gerber" artwork layer.

switch8.drl
The "Excellon" NC drill file.

switch8.tol
The "Excellon" tool rack file.

 RoboBricks Introduction

3. Hardware 117



4. Software

The Switch8 software is available as one of:

switch8.ucl
The µCL source file.

switch8.asm
The resulting human readable PIC assembly file.

switch8.lst
The resulting human readable PIC listing file.

switch8.hex
The resulting Intel® Hex file.

5. Issues

Any fabrication issues are listed here.

Copyright (c) 2000−2005 by Wayne C. Gramlich. All rights reserved.

This is the Revision D version of the TwinGearSensorLeft RoboBrick. The status of this project is work in
progress.

 RoboBricks Introduction

 4. Software 118



TwinGearSensorLeft Robobrick (Revision D)

Table of Contents

This document is also available in PDF format.

1. Introduction• 
2. Hardware

2.1 Circuit Schematic♦ 
2.2 Printed Circuit Board♦ 

• 

3. Issues• 

1. Introduction

The TwinGearSensorLeft board is designed to pick up a quadrature signal from a shaft using two Hamamatsu
P5507 chips.

2. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

2.1 Circuit Schematic

The schematic for the TwinGearSensorLeft RoboBrick is shown below:

The parts list kept in a separate file −− twingearsensorleft.ptl.

 TwinGearSensorLeft Robobrick (Revision D) 119



2.2 Printed Circuit Board

The printed circuit board files are listed below:

twingearsensorleft_back.png
The solder side layer.

twingearsensorleft_front.png
The component side layer.

twingearsensorleft_artwork.png
The artwork layer.

twingearsensorleft.gbl
The RS−272X "Gerber" back (solder side) layer.

twingearsensorleft.gtl
The RS−272X "Gerber" top (component side) layer.

twingearsensorleft.gal
The RS−272X "Gerber" artwork layer.

twingearsensorleft.drl
The "Excellon" NC drill file.

twingearsensorleft.tol
The "Excellon" tool rack file.

5. Issues

Any fabrication issues that come up are listed here.

Copyright (c) 2004 by Wayne C. Gramlich. All rights reserved.

This is the Revision D version of the TwinGearSensorRight RoboBrick. The status of this project is work in
progress.

 RoboBricks Introduction

2. Hardware 120



TwinGearSensorRight Robobrick (Revision D)

Table of Contents

This document is also available in PDF format.

1. Introduction• 
2. Hardware

2.1 Circuit Schematic♦ 
2.2 Printed Circuit Board♦ 

• 

3. Issues• 

1. Introduction

The TwinGearSensorRight board is designed to pick up a quadrature signal from a shaft using two
Hamamatsu P5507 chips.

2. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

2.1 Circuit Schematic

The schematic for the TwinGearSensorRight RoboBrick is shown below:

The parts list kept in a separate file −− twingearsensorright.ptl.

 TwinGearSensorRight Robobrick (Revision D) 121



2.2 Printed Circuit Board

The printed circuit board files are listed below:

twingearsensorright_back.png
The solder side layer.

twingearsensorright_front.png
The component side layer.

twingearsensorright_artwork.png
The artwork layer.

twingearsensorright.gbl
The RS−272X "Gerber" back (solder side) layer.

twingearsensorright.gtl
The RS−272X "Gerber" top (component side) layer.

twingearsensorright.gal
The RS−272X "Gerber" artwork layer.

twingearsensorright.drl
The "Excellon" NC drill file.

twingearsensorright.tol
The "Excellon" tool rack file.

5. Issues

Any fabrication issues that come up are listed here.

Copyright (c) 2004 by Wayne C. Gramlich. All rights reserved.

 RoboBricks Introduction

2. Hardware 122


	Table of Contents
	 RoboBricks Introduction
	 RoboBricks Project News
	 RoboBricks Specifications
	 Table of Contents
	 1 Introduction
	 2 Software Protocol
	 3 Interrupts
	 4 Baud Rate Control
	 5 Electrical Specification

	 RoboBricks Modules
	 Table of Contents
	 Robobricks Catagories

	 AnalogIn8 Robobrick (Revision C)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 Compass8 Module (Revision E)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 Digital8 Module (Revision D)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 DualMotor1Amp Module (Revision E)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 IRDistance8 Module (Revision A)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 IREdge4 Module (Revision D)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 IRRemote1 Robobrick (Revision C)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 IO8 Module (Revision A)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 LaserHolder1 Module (Revision A)
	 Table of Contents
	 1. Introduction
	 2. Hardware
	 3. Issues

	 LCD32 Module (Revision E)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 LCD32Holder Module (Revision C)
	 Table of Contents
	 1. Introduction
	 2. Hardware
	 3. Issues

	 Led10 Module (Revision F)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 Line3 Module (Revision A)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 MicroBrain8 Module (Revision C)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 Multiplex8 Module (Revision A)
	 Table of Contents
	 1. Introduction
	 2. Hardware
	 3. Issues

	 PICBrain11 Module (Revision D)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 Reckon2 Module (Revision B)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 RCInput8 Module (Revision B)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 ScanBase Module (Revision A)
	 Table of Contents
	 1. Introduction
	 2. Hardware
	 3. Issues

	 ScanPanel Module (Revision B)
	 Table of Contents
	 1. Introduction
	 2. Hardware
	 3. Issues

	 Sense3 Module (Revision A)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 Servo4 Module (Revision I)
	 Table of Contents
	 1. Introduction
	 2. Hardware Configuration
	 3. Programming
	 4. Hardware
	 5. Software
	 6. Issues

	 Serial1 Module (Revision A)
	 Table of Contents
	 1. Introduction
	 2. Hardware
	 3. Issues

	 Sonar8 Module (Revision C)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 Switch8 Module (Revision F)
	 Table of Contents
	 1. Introduction
	 2. Programming
	 3. Hardware
	 4. Software
	 5. Issues

	 TwinGearSensorLeft Robobrick (Revision D)
	 Table of Contents
	 1. Introduction
	 2. Hardware

	 TwinGearSensorRight Robobrick (Revision D)
	 Table of Contents
	 1. Introduction
	 2. Hardware


