
The RoboBricks Project

Table of Contents
 RoboBricks Introduction...1

 RoboBricks Project News..3

 RoboBricks Specifications...9
 Table of Contents..9
 1 Introduction..9
 2 Software Protocol...9
 3 Interrupts..12
 4 Baud Rate Control...13
 5 Electrical Specification..14

 RoboBricks Modules..18
 Table of Contents..18
 Robobricks Catagories..18

 RoboBricks Introduction

i

RoboBricks Introduction
The RoboBricks project provides a bunch of sensory and control modules that can be easily plugged together
to form interesting robot systems. Indeed, they can be attached together with some plastic Lego® bricks to
build robots, just like the Lego MindStorms® product. (Hence, the name RoboBricks.)

The basic concept behind RoboBricks is based on the small family of chips sold by FerretTronics®. The
differences between RoboBricks and the FerretTronics chips are 1) RoboBricks support two way
communication between the RoboBricks whereas the FerretTronics chips only offer one−way communication
and 2) RoboBricks are at the printed circuit board level, whereas the FerretTronics products are at the chip
level.

The current batch of RoboBricks are based around the PIC12Cxx 8−pin OTP (One Time Programmable)
embedded microcontroller chips from Microchip®. From DigiKey®, the quantity 1 price is less than $2.00 a
chip and the quantity 25 price is about $1.00 each. These chips do not have hardware UART's (Universal
Asynchronous Receiver/Transmitter) in them, but a 2400 baud link can be emulated in firmware.

The overall RoboBrick architecture is shown below:

Bascially all software is developed on a full 32−bit development platform such as Windows®, MacOS®, or
some flavor of Unix® (e.g. Linux®, Solaris®, BSD®, etc.) An RS−232 cable connects to a Tether RoboBrick
which connects to the master RoboBrick via a 4 write cable. After the master RoboBrick has been
programmed, the tether cable can be disconnected. The master RoboBrick is responsible for sending and
commands and receiving data back from the slave robobricks.

When the master RoboBrick runs out of slave RoboBrick connections, processing power, or bandwidth, the
robot platform can be repartioned to have two or more master RoboBricks with another supreme master
RoboBrick in control of the masters. Thus, master RoboBricks can be cascaded in a hierarchical fashion.

Copyright (c) 1999−2002 by Wayne C. Gramlich. All rights reserved.

 RoboBricks Introduction 1

http://www.lego.com/
http://www.legomindstorms.com/
http://www.ferrettronics.com/
http://www.microchip.com/0/index.htm
http://www.digikey.com/

This is news section of the RoboBricks projects. It is currently a work in progress.

 RoboBricks Introduction

 RoboBricks Introduction 2

RoboBricks Project News
The current RoboBricks News is:

2004−Apr
Wayne is scambling to get the µCL compiler rewritten and ported to the Microsoft® before the next
RoboBRiX article is published in Servo magazine.

2004−Mar
The third article on RoboBRiX is published in Servo magazine.

2004−Feb
The second article on RoboBRiX is published in Servo magazine.

2004−Jan
The first article on RoboBRiX is published in Servo magazine.

2004−Dec
Robobricks are renamed to RoboBRiX to make acquiring a register trademark easier. The first batch
of RoboBRiX go on sale at the RobotStore. RobotStore is run by Mondo−tronics, Inc.

2003−Sep
Contract negociations complete and contract is signed.

2003−Aug
Contract negociation impass resolved and negociations continue.

2003−May
Contract negociations with vendor reach an impass.

2003−Mar
Selected a vendor to manufacture and market RoboBricks.

2003−Jan
Dealt with a 50 day delivery time with our replacement PCB vendor. It was not really their fault
though.

2002−Oct
Dealt crappy boards from our PCB vendor. Ultimately wound up ordering replacement boards from
another PCB vendor. Scratch one PCB vendor off our list. 2002−Aug−10
Finished ordering parts for RoboBrick alpha program from AcroName, DigiKey, and Jameco. We
were able to get a 10% discount from Jameco through our membership with the Robotics Society of
America. The price of the sonar modules from Acroname was increased from $25 to $30.

2002−Aug−9
The boards from CustomPCB have arrived back. No silkscreen was applied to the boards.

2002−Jul−18
Ordered 20 copies of panel5 for the RoboBrick alpha program from CustomPCB in Mylasia for $265.

2002−Jul−11
Sent out last call for the RoboBricks alpha program.

2002−Jun−28
Sent a message to the Home Brew Robotics Club mail list announcing the RoboBricks alpha program.

2002−Jun−05
Shipped Panel 4 off to OliMex for fabrication.

2002−Apr−30
By the way, RoboBrick development is currently awaiting the completion of my newCNC motion
controller board. This board is needed so that we can take panels that contain several RoboBricks and
cut out the individuale RoboBricks under computer control.

2002−Jan−30
The first of 4 RoboBricks talks was give at the Home Brew Robotics Club. Again, there is great
interest in getting them. The talk slides are available.

 RoboBricks Project News 3

http://www.servomagazine.com/
http://www.servomagazine.com/
http://www.servomagazine.com/
http://www.servomagazine.com/
http://www.robotstore.com/
http://www.acroname.com/
http://www.digikey.com/
http://www.jameco.com/
http://www.robots.org
http://www.robots.org
http://www.custompcb.com/
http://www.custompcb.com/
http://www.hbrobotics.org/
http://www.olimex.com/pcb/
http://web.hbrobotics.org/

2002−Jan−27
The RoboBricks project was on display at the Tech Museum for a second day.

2002−Jan−26
The RoboBricks project was on display at the Tech Museum. One of the most commonly asked
questions was `How can we get some?'

2002−Jan−10
The panel3 boards have come back, been cut into smaller boards and the assembly process continues.

2002−Jan−3
The panel3 files have been sent off to Alberta Printed Circuits. Yeah!

2001−Dec−28
The Light4−B and Servo4−C and are now panel3 ready. Added panels directory.

2001−Dec−27
The MotorScan−A is now panel3 ready.

2001−Dec−24
The IRSense2−A is now panel3 ready.

2001−Dec−22
The SpeechQV1−A is now panel3 ready.

2001−Dec−21
The OOPicHub15−A is now panel3 ready.

2001−Dec−20
The IRBeacon8−A is now panel3 ready.

2001−Dec−17
The LCD32−A is now panel3 ready.

2001−Dec−15
The Motor3−A is now panel3 ready.

2001−Dec−14
The SonarDT1−A and CompassDT1−A are now Fab3 ready.

2001−Dec−13
The Motor2−C and Shaft2−C are now panel3 ready.

2001−Dec−12
The Laser1−B is now panel3 ready.

2001−Dec−11
The ProtoPIC−B and PIC876Hub10−B are now panel3 ready.

2001−Dec−10
The Tether−C, Switch8−C, LaserHead1−B, and IRRemote1−A are now panel3 ready.

2001−Dec−8
The LED10−B is now panel3 ready.

2001−Dec−7
The InOut10−B is now panel3 ready.

2001−Dec−6
The Harness−C is now panel3 ready.

2001−Dec−5
The Compass8−B, Compass360−B, and BS2Hub8−B are now panel3 ready.

2001−Dec−4
Both AnalogIn4−C and BIROD5−A are now panel3 ready.

2001−Dec−3
AIROD4−A is now panel3 ready.

2001−Dec−1
Starting to prepare RoboBricks for Fab3. Activity9−B is now panel3 ready.

2001−Nov−30
Pretty much done with Laser1−A RoboBrick. panel2 is basically done. Panel3 will start shortly.

 RoboBricks Introduction

 RoboBricks Project News 4

http://www.thetech.org/
http://www.thetech.org/
http://www.apcircuits.com/

2001−Oct−23
Got the Light4−A RoboBrick working.

2001−Oct−22
Added the IRRemote1−A RoboBrick that Bill is working on. Got the AIROD2−A RoboBrick
working.

2001−Oct−15
The AnalogIn4−B RoboBrick is done.

2001−Oct−10
The BIROD2−B RoboBrick is done.

2001−Oct−4
The LaserHead1−A RoboBrick is done. We are now getting a usable signal from across the room with
very inexpensive IR sensors.

2001−Oct−1
The Activity9−A, PIC876Hub10−A, Tether−B RoboBricks are done.

2001−Sep−29
The Shaft2−B RoboBrick is done.

2001−Sep−28
The InOut10−A RoboBrick is done.

2001−Sep−16
The Servo4−B and Compass8−A RoboBricks are done. The Servo4−B boards have problems
whenever the servo runs up against a stop; the next revision will need a separate power supply.

2001−Sep−12
The LED4−B, Switch8−B, Motor2−B RoboBricks are now done. Unfortuately, the Motor2 board
required some trace rerouting; so a revision C will definitely be necessary. Also, the BS2Hub8
RoboBricks has been successfully programmed to talk to both a LED10−B and a Switch8−B. A
working robot is sure to be on−line soon.

2001−Sep−6
The panel2 order has been sliced and diced and at least one of most of the boards have been built. The
LED10−B board is the first one to burned into a OTP (One Time Programmable) device.

2001−Aug−22
The panel2 order has arrived back from Alberta Printed Circuits.

2001−Aug−20
The RoboBrick Specifications have been updated.

2001−Aug−19
The panel2 order was sent off to Alberta Printed Circuits.

2001−Aug−3
The panel2 order is ready to go. I will have to wait until I get back from a two week vacation before I
submit it to Alberta Printed Circuits though.

2001−Aug−2
All of the master and slave RoboBricks are now in ready for panel2. There are some changes that
need to be made to HobECAD, but that should only take a day or two. After I come back from a two
week vacation, the panel2 run will take place.

2001−Jul−29
The various master and slave RoboBricks are now panel2 ready. The debug RoboBricks still need to
be processed.

2001−Jun−21
The Activity4 RoboBrick and the BIROD2 RoboBricks are now panel2 ready.

2001−Jun−18
The Shaft2 RoboBrick is now panel2 ready.

2001−Jun−12
The LED10 and Out10 RoboBricks are now panel2 ready.

 RoboBricks Introduction

 RoboBricks Project News 5

http://www.apcircuits.com/
http://www.apcircuits.com/
http://www.apcircuits.com/

2001−Jun−5
The Switch8 and In8 RoboBricks are now 100% done. The release 0.46 version of µCL fixes yet
another subtraction bug that was encountered.

2001−Jun−2
The Motor2 RoboBrick is 100% done. It was necessary to do some clock adjustment to get the
Motor2 Robobrick to work every time. Thus, the clock adjust commands in the shared protocol really
payed off. The release 0.45 version of µCL fixes yet another register bank swapping problem that was
encountered (produces tighter code too.)

2001−May−23
At long last the Servo4 RoboBrick is 100% done. This is a big milestone, since Servo4 is one of the
very hardest of the RoboBricks to implement. The release 0.44 version of µCL fixes some problems
that were found along the way. Bill is working the bugs out of the LED10 RoboBrick.

2001−May−10
At long last the Threshold4 RoboBrick is 100% done. Most of the RoboBrick module ppages have
been reorganized to leave the artwork out. This makes the resulting PDF files smaller. Also, the
PIC12C509 programmer code was the µCL programming environment. The Parallel Port Server that
Wayne uses to run his PIC Programmer got some modifications as well.

2001−Apr−23
The specification for Stepper1 is done. Now only the code needs to be written. (Heh−heh ;−)

2001−Apr−22
Worked on software for AnalogIn4 and InOut4. Now there is only Stepper1 left to be done.

2001−Apr−21
Worked on software for BIROD2, In8, LED10, Motor2, Out10, Shaft2, and Switch8. Only three
modules left to finish up −− AnalogIn4 (easy), InOut4 (easy), and Stepper1 (very hard). In addition,
the 0.36 release of the µCL compiler improves code generation for the PIC16C505 along with
improved array indexing with constants.

2001−Apr−9
Rearranged the web pages into an introduction, news (i.e. this document), specifications, and
modules. All of the underlying module directories now generate PDF files. The top level directory has
two PDF files −− robobricks.pdf and rebobricks_all.pdf.

2001−Apr−2
Rewrote the RoboBrick Interrupt protocol stuff. There are now some shared commands for supporting
interrupts. Improved string handling and fixed another register bank switching bug in µCL. Upgraded
Threshold4 to use the new interrupt protocol stuff. Also, there is now a test program for testing
Threshold4.

2001−Mar−4
Updated the led4.ucl code to be a complete implementation of the LED4 specification. Renamed
Activity to be Activity4. Wrote the code for activity4.ucl.

2001−Mar−3
Updated the servo4.ucl code to be a complete implementation of the Servo4 specification. Better
comments too. This version needs the 0.30 version of the µCL compiler.

2001−Mar−1
Fixed output to GPIO2 for PIC509's in µCL (release 0.29.) Also, added the assembly directive. The
servo4.ucl code is working inside of a PIC12C509.

2001−Feb−14
Improved code generation for switch statements in µCL.

2001−Feb−13
Updated the µCL compiler to contain random number generation, oscillator calibration initialization,
A/D converter initialization, and fixed array and string constant access from different code and data
banks. Updated Threshold4 to contain a very complete implementation of the code.

2001−Feb−5

 RoboBricks Introduction

 RoboBricks Project News 6

Updated the programming specifications for AnalogIn4, In8, Shaft2, Switch8, Threshold4, and
Activity4 RoboBricks.

2001−Jan−31
Showed CDBot following a line of black electrical tape using RoboBricks at the Home Brew
Robotics Club meeting. Some folks at the Tech Museum showed up and were quite interested in
RoboBricks. Apparently there is some sort of similar technology called Stackable Core Modules
being developed over at Twin Cities Robotics Group (TCRG).

2001−Jan−21
Added links to CDBot.

2001−Jan−17
Updated Activity4, Harness, PIC16F876, and Tether to get the directions of SIN and SOUT properly
oriented. The programming specifications for the Motor2 RoboBrick have been updated. There is still
a bug in µCL that causes the delay routine to have a non−uniform delay.

2001−Jan−16
The boot loader for PIC16F876 is almost working with the [download] button in the µCL graphical
user interface. The boot loader is residing in code bank 3 (0x1800) and uses register bank 3 (0x180).

2000−Dec−30
Updated programming specification of In8 RoboBrick.

2000−Dec−21
Added the last remaining pictures for Threshold4 and PIC16F876. The µCL compiler now has support
to directly program a Microchip microcontroller.

2000−Dec−11
Added most of the remaining pictures (Activity4, AnalogIn4, Bench, Hub8, LED4, Motor2,
ProtoPIC8Pin, Stepper1, and Switch8.) We're only missing PIC16F876 and Threshold4 pictures now.
We've got LED4 working with a UV erasable PIC12CE674. Motor2 is starting to work. There are
some command transmission reliability problems being worked on. Sometimes the RoboBricks do not
reset properly on power up. Our short term goal is to get a Line following robot working using a
battery and the Hub8, PIC16F876, Threshold4, and Motor2 RoboBricks.

2000−Nov−30
Added a whole bunch of pictures of individual RoboBricks (Birod2, Harness, In8, InOut4, LED10,
out10, Servo4, Shaft2, and Tether). We're still missing a picture of LED4. Updated the source files for
harness and LED4. Continued bug fixing in µCL. LED4 code is now working using the PIC16F876
emulator. Stand−alone execution using a PIC12CE764 UV erasable part should occur soon. Starting
to add PIC programmer support to µCL development environment.

2000−Nov−15
Rearranged the µCL language specification to be in its own file. Documented the emerging µCL
programing environment. Added a whole bunch of issue sections to the revision A RoboBricks as
they get built out. There is now an over−arching RoboBrick Software Protocol. Also, because Bill
wired up a cable backwards, I added a Cable Mechanical Specification.

2000−Nov−9
The following RoboBricks are starting to work −− Tether (100% done), Harness (100% done), Bench
(100% done), Hub8 (100% done), PIC16F876 (Needs lots of software), Emulate (100% done), and
LED10 (50% done; more software needed). There is still a bunch of software development to do, but
the hardware seems to be working fairly well. The Revision B boards are going to switch from a
4−wire bus to a 6−wire RoboBrick interconnect standard. We had a heck of a time finding a 4−wire
crimper; we figure most people will have a much easier time finding a 6−wire crimper. Lastly, the
latest version of µCL now has the beginnings of an integrated development environment (sorry, no
documenation yet.)

Copyright (c) 2000−2002 by Wayne C. Gramlich. All rights reserved.

 RoboBricks Introduction

 RoboBricks Project News 7

http://www.geocities.com/homebrewrc/
http://www.geocities.com/homebrewrc/
http://www.thetech.org/
http://www.barb-n-bob.com/coreindex.htm
http://www.tcrobots.org/

This is the specification portion of the RoboBricks Projects. It is currently work in progress.

 RoboBricks Introduction

 RoboBricks Project News 8

RoboBricks Specifications

Table of Contents

Introduction1.
Software Protocol2.
Interrupts3.
Baud Rate Control4.
Electrical Specification5.
Mechanical Specification6.

1 Introduction

There are three components to the RoboBrick specifications −− the software protocol, electrical protocol, and
the mechanical connector specification.

2 Software Protocol

The RoboBrick protocol is very simple. The controlling processor sends out one or more command bytes and
the selected Robobrick responds with one or more response bytes. The RoboBrick protocol is asynchronous
serial in 8N1 format (i.e. 1 start bit, 8 data bits, no parity, and 1 stop bit.) The protocol speed is at 2400 baud.

All of the slave RoboBricks share some common commands to help with glitches, RoboBrick identication,
and clock drift management. These are discussed briefly below:

Glitches
A glitch occurs when a spurrious signal manages to cross−couple onto a RoboBrick signal wire.
There a few commands to help combat glitches.

Identification
Each RoboBrick has a bunch of identification information in it. This identification information
contains the major and minor version numbers of the RoboBrick protocol, the major and minor
version numbers for the RoboBrick itself and a 128−bit random number.

Clock Drift
RoboBricks are currently implemented using low cost 8−pin PIC processors running off of an internal
4MHz RC oscillator. While this reduces costs, RC oscillators are notoriously sensitive to temperature
variations. While most RoboBrick applications will choose to ignore this issue, there are a variety of
commands that can be used to adjust the RC osciallator frequency up and down as needed.

The shared commands are summarized textually below:

Glitch
Sometimes a strong current pulse from elsewhere in the robot will cross couple with a RoboBrick
signal wire and cause a spurrious start bit. The rest of the bits will be read as all ones. We call such a
command the glitch command and all it does is bump a counter that can be read back via the Glitch
read comand.

Glitch Read
This command returns the current value of the glitch counter and then resets the counter to zero.

ID Reset

 RoboBricks Specifications 9

This command will reset the ID pointer register.
ID Next

This command will return the next byte of identifier information. The ID pointer register is
incremented.

Clock Pulse
This command cause the system to send a null character back. This pulse width can be measured by
the master system to determine if the RC oscillator is running fast or slow.

Clock Read
This command returns the current value of the clock adjust register.

Clock Increment
This command increments the clock adjust register.

Clock Decrement
This command decrements the clock adjust register.

The shared command protocol is defined in the table below:

Shared RoboBrick Commands

Command
Bit Number

Send/ReceiveDescription
7 6 5 4 3 2 1 0

Glitch 1 1 1 1 1 1 1 1 Send Glitch Command

Glitch Read 1 1 1 1 1 1 1 0 Send Glitch Read Command

g g g g g g g g Receive Returns 8−bit gggggggg glitch counter value

ID Reset 1 1 1 1 1 1 0 1 Send ID Reset Command

ID Next 1 1 1 1 1 1 0 0 Send ID Next Command

i i i i i i i i Receive
Returns next 8−bit iiiiiiii identification byte
value

Clock Pulse 1 1 1 1 1 0 1 1 Send Clock Pulse Command

0 0 0 0 0 0 0 0 Receive
Returns a null byte that can be timed for
clock drift

Clock Read 1 1 1 1 1 0 1 0 Send Clock Read Command

c c c c c c c c Receive
Returns the 8−bit cccccccc clock adjust
register value

Clock
Increment

1 1 1 1 1 0 0 1 Send Clock Increment Command

Clock
Decrement

1 1 1 1 1 0 0 0 Send Clock Decrement Command

The identification bytes in each RoboBrick are arranged as follows:

Offset Name Description

0 RBMajor
Major Version Number for identification stream
(currently 1)

1 RBMinor
Minor Version Number for identification stream
(currently 0)

2 BrickID BrickID for common Bricks (see table below)

3 BrickRev Brick Revision (0=A, 1=B, 2=C, 3=D, 4=E 5=F,

 RoboBricks Introduction

 RoboBricks Specifications 10

6=G 7=H, etc.)

4 BrickFlags 8 RoboBrick Specific Flags

5
Reserved0 (use
0)

Reserved for future use

6
Reserved1 (use
0)

Reserved for future use

7
Reserved2 (use
0)

Reserved for future use

8−23 UID0−15 128−bit Unique Identifier (Randomly Generated)

24 NameLength RoboBrick Name Length

Next NameLength
Bytes

BrickName Name of RoboBrick in ASCII

Next Byte VendorLength Vendor Name Length

Next VendorLength
Bytes

VendorName Vendor Name in ASCII

Next Byte OptionsLength Options Length (optional)

Next OptionLength
Bytes

Options Option Bytes (optional)

The BrickFlags are currently defined as follows:

Bit
BrickFlags Description

7 6 5 4 3 2 1 0

c c=1 => clock adjust supported

i i=1 => interrupt protocol supported

o o=1 => optional bytes follow vendor name

b b=1 => Baud rate change is allowed

The RoboBricks are given for BrickID identifiers on a first come first serve basis. The following identifiers
have already been allocated:

ID RoboBrick Name

0−7
Reserved for
experimenters

8 LED4 (obsolete)

9 LED10 (obsolete)

10 In8 (obsolete)

11 BIROD2 (abandoned)

12 AnalogIn4

13 Out10 (obsolete)

14 Motor2

15 Servo4

16 Shaft2

17 Stepper1

 RoboBricks Introduction

 RoboBricks Specifications 11

18 Switch8 (obsolete)

19 Threshold4 (obsolete)

20 AIROD2 (abandoned)

21
Compass360
(obsolete)

22 Compass8 (obsolete)

23 InOut10

24 Laser1

25 Light4

26 Sonar1 (abandoned)

27 AIROD4

28 BIROD5 (abandoned)

29 SONARDT1

30 Bill Hubbard's RC4

31 IRProximity2

32 Digital8

33 DualMotor1Amp

34 IREdge4

Each brick is assigned a 128−bit random number. The probability of two bricks being assigned the same
random number is 1/(2128) which is a pretty small number. On Linux, the random numbers can be read from
/dev/random (or /dev/urandom.)

3 Interrupts

At 2400 baud, it can take a while to poll several input RoboBricks to see if anything interesting has occured.
Sometimes RoboBricks are sensing inputs that need a response that is faster than strict polling can provide.
For example, bumper detectors. To support low latency, many RoboBricks support the RoboBrick Interrupt
Protocol.

The RoboBrick Interrupt Protocol is very simple. Each RoboBrick that supports the protocol has two bits −−
the interrupt pending bit and the interrupt enable bit. The interrupt pending bit is set by the RoboBrick when a
prespecified user event has occured. The interrupt enable bit is set to allow the interrupt to occur.

The following steps occur when using interrupts:

The user sends some RoboBrick specific commands to set up the conditions for setting the interrupt
pending bit.

1.

The user sends an enable interrupt command.2.
When the interrupt condition occurs, the interrupt pending bit is set and an interrupt is triggered. The
interrupt is signaled by dropping the output line from the RoboBrick to a low.

3.

The master processor detects that the interrupt has occured.4.
One or more commands are sent to the Robobrick to figure out what happened. When the first bit of
the first command is received, the RoboBrick clears both the interrupt enable bit and restores its
transmit line high.

5.

Depending upon the RoboBrick, the interrupt pending bit may need to be cleared by sending pending6.

 RoboBricks Introduction

 3 Interrupts 12

bit clear command. For some other RoboBricks, the condition that sets the interrupt pending bit may
automatically clear.

If the user needs to query the RoboBrick before the interrupt occurs, any command will clear the interrupt
enable bit. In order to get another interrupt, another interrupt enable command must be sent.

Since many RoboBricks will implement the RoboBrick Interrupt Protocol, there are some common commands
defined to support the protocol:

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read Interrupt Bits
Send 1 1 1 0 1 1 1 1 Return the interrupt enable bit e and pending

bit p.Receive0 0 0 0 0 0 e p

Set Interrupt Bits Send 1 1 1 1 0 0 e p
Set interrupt enable bit to e and pending bit to
p.

Set Interrupt
Pending

Send 1 1 1 1 0 1 0 p Set interrupt pending bit to p.

Set Interrupt EnableSend 1 1 1 1 0 1 1 e Set interrupt enable bit to e.

4 Baud Rate Control

As of the version 1.1 of the RoboBricks protocol, the ability to change baud rate has been added. All
RoboBrick modules start out communicating at 2400 baud using an 8N1 (1 start bit, 8 data bits, No parity, and
1 stop bit) asynchronous serial protocol. A RoboBrick indicates that it can support increases in its baud rate by
seting bit 3 in the BrickFlags byte (5th byte = offset 4) of the RoboBrick identificiation string.

There are three RoboBrick baud rate control commands:

Read Available Baud Rates
This command will return a bit mask of the baud rates supported by the RoboBrick.

Read Current Baud Rate
This command will return a code that specifies what the current baud rate is.

Set New Baud Rate
This command will set the new baud rate.

The available baud rates are in the table below:

Baud Rate Code Mask (binary)

2400 0 0000 0001

4800 1 0000 0010

9600 2 0000 0100

19200 3 0000 1000

38400 4 0001 0000

57600 5 0010 0000

115200 6 0100 0000

230400 7 1000 0000

 RoboBricks Introduction

 4 Baud Rate Control 13

The detailed commands are:

Command
Send/

Receive
Byte Value

Discussion
7 6 5 4 3 2 1 0

Read
Available
Baud Rates

Send 1 1 1 0 1 1 1 0
Return the available baud rates as a mask
abcdefg where a=230400, b=115200, ...,
h=2400

Receive a b c d e f g h

Read Current
Baud Rate

Send 1 1 1 0 1 1 0 1 Return the current baud rate as rrr where
rrr=000 => 2400, rrr=001 => 4800, ...,
rrr=111 => 230400Receive 0 0 0 0 0 r r r

Set New Baud
Rate

Send 1 1 1 0 1 1 0 0 Set the new baud rate to rrr where
rrr=000 =>2400, rrr=001 => 4800, ...
rrr=111 =>230400. The first two bytes
are sent at the old baud rate. The next two
bytes are sent/received at the new baud
rate. If the RoboBrick does not receive the
last byte correctly at the new baud rate,
this command will fail and the baud rate
will remain unchanged.

Send 0 r r r 0 r r r

Receive 0 1 0 1 0 1 0 1

Send 0 1 0 1 0 1 0 1

The Set New Baud Rate command is a little tricky and merits additional discussion. Changing baud rates is
potentially risky. If the host attempts to change the baud rate, and the target RoboBrick sets the baud rate
incorrectly, the host will no longer be able to successfully communicate with the RoboBrick. The only way to
recover is to reset power to the RoboBrick to get it back to 2400 baud. For this reason, the command to set the
new baud rate requires positive acknowledgement that the baud rate has changed. The first two bytes of the
command are sent at the old baud rate, where the second byte specifies the desired new baud rate. The next
two bytes of the command are performed at the new baud rate. If the host does not get a '0101 0101', the
knows that something has gone wrong. If the RoboBrick does not get a '0101 0101' from the host, the
RoboBrick knows that something has gone wrong. If anything goes wrong, the baud rate reverts back to the
original value.

After the baud rate for a RoboBrick has been set, it probably makes sense to run the clock adjust algorithm to
make sure the RoboBrick clock is as close as possible to the host clock.

5 Electrical Specification

The RoboBrick electrical protocol is based around a 4 wires using standard 5−pin straight headers with .100
inch between the pins. The 4 wires are:

Ground (GND)
Ground return

Power (PWR)
+5 Volts of regulated DC power

Serial Down (MOUT => SIN)
Serial bit stream down using 8N1 (1 start bit, 8 data bits, no parity, and 1 stop bit) asynchronous
signaling at 2400 baud. The signal levels swing between .2 volts and +4.8 volts. A 1 is indicated by
4.8 volts and a zero is indicated by .2 volts. The start bit is a zero and the stop bit is a one.

Serial Up (MIN <= SOUT)

 RoboBricks Introduction

 5 Electrical Specification 14

Serial bit stream up using 8N1 asynchronous signaling at 2400 baud. The signal levels swing between
ground and +5 volts. A 1 is indicated by 4.8 volts and a zero is indicated by .2 volts. The start bit is a
zero and the stop bit is a one.

The printed circuit boards use standard .100 straight male headers. These are usually purchased in lengths of
30−40 pins (e.g. Jameco 160881), and are snipped to a length of 5 pins. The cables are manufactured using 5
pin female cable headers with .100 centers (e.g. Jameco 163686).

The pin outs for master boards are:

Pin 1 (GND)
GND stands for GrouND return.

Pin 2 (NC)
NC stands for No Connection. This pin is snipped off for polarization purposes.

Pin 3 (PWR)
PWR stand sfor PoWeR and corresponds to +5 volts of regulated DC power.

Pin 4 (MOUT)
MOUT stands for Master OUT and corresponds to the serial down connection for sending serial data
from the master RoboBrick to the slave RoboBrick.

Pin 5 (MIN)
MIN stands for Master IN and corresponds to the serial up connection for sending serial data from the
slave RoboBrick to the master RoboBrick.

The pin outs for the slave boards are:

Pin 1 (GND)
GND stands for GrouND return.

Pin 2 (NC)
NC stands for No Connection. This pin is snipped off for polarization purposes.

Pin 3 (PWR)
PWR stands for PoWeR and corresponds to +5 volts of regulated DC power.

Pin 4 (SIN)
SIN stands for Slave IN and corresponds to the serial down connection for sending serial data from
the master RoboBrick to the slave RoboBrick.

Pin 5 (SOUT)
SOUT stands for Slave OUT and corresponds to the serial up connection for sending serial data from
the slave RoboBrick to the master RoboBrick.

The cables are wired straight through with pin 2 left unconnected (i.e. pin 1 to pin 1, pin 3 to pin 3, pin 4 to
pin 4 and pin 5 to pin 5.) 22 AWG stranded wire must be used for the cable wires. There is no offical color
code for the cable wires.

Pin 2 is used to polarize the cable. A male pin (Jameco 145357) is jammed into pin 2 and the male pin that
sticks out is snipped off For a properly polarized cable and RoboBrick boards, it is not possible to plug the
cable into the board either backwards or off by one. It is possible to plug a master to a master and a slave to
slave, but no harm results.

6 Mechanical Specification

RoboBricks are compatible with the Lego®, MegaBloks®, and RokenBok® plastic toys. The standard pitch

 RoboBricks Introduction

5 Electrical Specification 15

http://www.lego.com/
http://www.megabloks.com/
http://www.rokenbok.com/

between studs on these toys is approximately 5/16 inches (or 4mm.) This means that a 4 by 4 square is 1.25
inches. The RoboBrick boards are always in units of 1.25 inch squares. All RoboBricks are 2.5 inches high by
some multiple of 1.25 inches wide. Thus, the smallest RoboBrick is 1.25 by 2.5 inches, the next size up is 2.5
by 2.5, and the one after that is 2.5 by 3.75, etc.

The top and bottom of each RoboBrick has a row of holes that fit over the studs on plastic bricks. Thus, the
holes are at least .195 inches in diameter. Since most RoboBrick printed circuit boards are double sided with
plated through holes, the holes should probably be drilled with at least a .210 inch drill. The formula for
determining the offset for stud N (where N starts at 0) is:

Offset = U/2 + N × U

where U is 5/16 of an inch. The expanded formula is:

Offset = .15625 + N × .31250

The first 8 values for this formula are shown below:

Count Offset (in.) N×.05+/−offset

0 0.15625 3×.05+.00625

1 0.46875 9×.05+.01875

2 0.78125 16×.05−.01875

3 1.09375 22×.05−.00625

4 1.40625 28×.05+.00625

5 1.71875 34×.05+.01875

6 2.03125 41×.05−.01875

7 2.34375 47×.05−.00625

Repeats on 2.5 inch grid

After 8 entries, the numbers repeat offset by 2.5 inches.

Somewhere on each RoboBrick, must be name of the RoboBrick. The standard naming convention is
`{name}−{revision}'. For example, 'Digital8−A', `DualMotor1Amp−B', etc. Please note that the revision
corresponds to both hardware revision and the software revision inside the microcontroller.

A diagram of the mechanical specification is shown below:

 RoboBricks Introduction

5 Electrical Specification 16

Copyright (c) 1999−2005 by Wayne C. Gramlich. All rights reserved.

This is the modules component of the RoboBricks project. It is currently work in progress.

 RoboBricks Introduction

5 Electrical Specification 17

RoboBricks Modules

Table of Contents

Robobricks Catagories•
Master Robobricks (MicroBrain8, PICBrain11)•
Slave Robobricks (AnalogIn8, Compass8, CompassDT1, Digital8, DualMotor1Amp,
DualMotor2Amp, IREdge4, IRBeacon8, IRDistance4, IRDistance8, IRDistanceHolder,
IRProximity2, IO8, IRRemote1, Keypad12, Laser1, LaserHead1, LCD32, LCD32Holder, LED10,
Line3, ProtoPIC, RCInput8, Reckon2, Rotation2, Sense3, Sonar8, SonarSR, SonarDT1, SpeechQV1,
Servo4, SRF Holder, Stepper1, and Switch8)

•

Miscellaneous Robobricks (IR Distance Holder, LaserHolder1, Scan Base, Scan Panel, Servo
Adaptor 0.4, Shaft Sense 2, SRF Holder 2, Strut 1x2, Strut 1x4, Strut 1x8, Twin Gear Sensor Left,
Twin Gear Sensor Right)

•

Debug Robobricks (Activity9, Debug16, Emulate, Harness, and Tether)•
Obsolete Robobricks (AIROD2, AIROD4, AIROD5, AnalogIn4, Bench, BIROD5, BS2Hub8,
Compass360, Hub8, In8, InOut4, InOut10, IRSense2, IRSense3, LED4, Light4, Motor2, Motor3,
MotorScan, OOPicHub15, Out10, PIC16F876, PIC876Hub10, Shaft2, Sonar1, ProtoPic8Pin, and
Threshold4)

•

Robobricks Catagories

Robobricks are partioned into four catagories:

Master Robobricks
A master module contains some sort of processor and a bunch of connectors for connecting to and
controlling 1 or more slave Robobricks (see definition below.) Many master modules have some sort
of power regulator for producing 5 volts from the battery voltage.

Slave Robobricks
A slave module performs some sort of input or output function. There are usually many slave
Modules per robot.

Debug Robobricks
A debug module provides some sort of debugging function. These modules are only during robot
development After a robot has been debugged, the debug modules can be removed.

Obsolete Robobricks
An obsolete module is one that no longer makes any sense to build. Typically they have been replaced
by something better. These are listed in a separate section below.

A robot consists of one master Module and one or more slave Modules. Debug Modules are added and
removed as needed for debugging.

Master Robobricks

The following master Robobricks are under active development:

MicroBrain8
The MicroBrain8 module provides a master module controlled by any processor that is pin with the
Basic Stamp II® from Parallax®. This module has a battery conntection, power switch, and 5 volt
linear voltage regulator. It has hub connections for controlling up to 8 modules.

 RoboBricks Modules 18

http://www.parallaxinc.com/

PICBrain11
The PICBrain11 module provides a master module controlled by a PIC16F876 from Microchip®. This
module has a battery connection, power switch, and 5 volt linear voltage regulator with fuse. It has
hub connections for controlling up to 11 modules. It can be directly connected to an RS−232 port on a
host computer.

Eventually, there should be master Modules for each of the more popular microcontrollers out there (e. g.
Basic Stamp II, HC11, AVR, 8051, Rabbit, etc.)

Slave Robobricks

The following slave Robobricks are being actively developed (in alphabetical order):

AnalogIn8
The AnalogIn8 module allows for the input of up to 8 analog voltages between 0 and 5 volts with a
resolution of up to 10 bits. There are 6 trim pots on board that can be jumpered to the first 6 analog
inputs.

Compass8
The Compass8 module uses the 1490 digital compass module from Dinsmore Instrument Company.
This module provides a 8 directions N, NE, E, SE, S, SW, W, and NW. This module can prevent a
robot from getting totally turned around.

CompassDT1
The CompassDT1 module uses the CMPS01 compass module from Devantech to provide a compass
bearing between 0.00 and 359.00 degrees.

Digital8
The Digital8 module has 8 I/O lines that can be used for input or output. A line can be changed from
input to output and back under program control. This module replaces InOut10, Out10, In8, and
InOut4 Modules.

DualMotor1Amp
The Robobricks DualMotor1Amp module an control up to two small DC motors. The motor voltage
input can range from 5 volts to 24 volts. It is capable of accelleration ramping and electronic
breaking. Lastly, it has an optional watchdog feature that will turn the motors off if a command has
not been received in a while.

DualMotor2Amp
The Robobricks DualMotor1Amp module an control up to two small DC motors with a current of up
to 2 amps. The motor voltage can be as high as 48 volts. The two internal H−Bridges can be tied
together to provide a current capacity of 3.5 amps to a single motor.

IRBeacon8
The IRBeacon8 module is used to provide an IR beacon that Modules can home in on. It is designed
for both stand alone operation and to work in a Module setting.

IRDistance4
The IRDistance4 module is used measure distances using up to 4 Sharp GP2D12 (InfraRed Optical
Distance) modules. The modules are typically attached to IRDistanceHolder modules.

IRDistance8
The IRDistance8 module is used measure distances using up to 8 Sharp GP2D12 (InfraRed Optical
Distance) modules. The modules are typically attached to IRDistanceHolder modules.

IRDistanceHolder
The IRDistanceHolder module is used carry 1 4 Sharp GP2D12 (InfraRed Optical Distance) module.

IREdge4
The IREdge4 module provides a way to use inexpensive IR emitter/detector pairs to sense changes in

 RoboBricks Introduction

Robobricks Catagories 19

http://www.microchip.com/
http://dinsmoregroup.com/dico/
http://www.robot-electronics.co.uk/htm/cmps.shtml
http://www.robot-electronics.co.uk/

surface reflectivity.
IRProximity2

The IRProximity2 module is used detect objects via reflection of an InfraRed (IR) light. There are two
light sources and one light receiver along one edge of the board.

IRRemote1
The IRRemote1 module is used to send and receive IR signals. Currently, only signals from Sony
style IR Remotes are supported.

Keypad12
The Keypad12 Module has 12 push buttons for user control inputs and 12 LED's for direct output.

LCD32
The LCD32 module displays 2 lines of 16 characters each using an LCD display.

LCD32Holder
The LCD32 module holdes a 2×16 LCD module that is plugged into the LCD32 module.

Laser1
The Laser1 Module is able to detect when an inexpensive laser pointer is reflecting off of a passive
reflector beacon. In conjunction with 3 reflector beacons placed in known locations, it is possible for a
robot to triangulate its position accurately.

LaserHead1
The LaserHead1 Module is a board that be used to mount a laser pointer and some photo detectors on.
It is meant to work in conjunction with the Laser1 Module.

LCD32
The LCD32 Module provides a way to output up to 32 characters (2 lines of 16 characters each) to a
Liquid Crystal Display.

LED10
The LED10 Module provides the ability to output 10 bits to 10 on board LED's.

Line3
The Line3 Module provides the ability to sense lines on flat surfaces for building line/maze followers.

PIC876Hub10
The PIC876Hub10 module provides a master Module controlled by PIC16F876 from Microchip®.
This module has a battery connection, power switch, and 5 volt linear voltage regulator with fuse. It
has hub connections for controlling up to 10 Modules. Lastly, it has the ability to sense the battery
voltage. This module has morphed into the PICBrain11.

ProtoPIC
The ProtoPIC Module is just a prototyping board for the 8−pin PIC's (e.g. PIC12C509 and
PIC12C672) and the 14−pin PIC's (e.g. PIC16C505.)

RCInput8
The RCInput8 module reads up to 8 RC servo pulse widths from a standard RC server receiver.

Reckon2
The Reckon2 module is used to manuver a robot. It can contol two motors in "differential steering"
mode. Each motor needs to have a shaft encoder with a quadrature output. If there is enough
resolution on the shaft encoder and the wheels are not too "squishy", it is possible to keep pretty
accurate track of a robot's location and bearing using deduced reckoning.

Rotation2
The Rotation2 module can keep track of up to two quadrature shaft encoders.

SpeechQV1
The SpeechQV1 Module is used to perform speech synthesis to allow a robot to talk.

Sense3
The Sense3 module contains a infrared distance, sonar and laser bearing sensor that is meant to be
scanned using a hobby servo.

Servo4
The Servo4 Module is used to connect to up to 4 standard servo motors.

 RoboBricks Introduction

Robobricks Catagories 20

http://www.microchip.com/

SonarDT1
The Sonar1 Module is used to provide a Module interface to the SRF04 sonar range finder from
Devantech.

Sonar8
The Sonar8 module can drive up to 8 SonarSR modules.

SonarSR
The SonarSR module provide an ultra−sonic send/receive functionality.

SRFHolder
The SRFHolder holds a Robot Electronics SRF04 sonar ranging module.

Stepper1
The Stepper1 Module can control one small unipolar or bipolar stepper motor.

Switch8
The Switch8 Module will read in 8 bits of data from on−board switches.

Below is a list of slave Robobricks that are under consideration for future development:

Analog Output Module
An anilog output module can output a single 5−bit output voltage.

Tilt Module
This module detects what its current inclination is.

IR Remote Module
This module detects signals from an IR Remote control.

Microphone Module
This module detects the current sound level. inclination is. It does not provide way to record sound.

FM Synthesis Module
This module produces sounds using FM synthesis.

Temperature Module
This module measures the current temperature.

Light Module
This module measures the current amount of ambient light.

Miscellaneous Robobricks

The following Miscellaneous Modules are being worked on:

IRDistance Holder
A board for holding a Sharp GP2D12 infrared distance sensor.

LaserHolder1
A board mecahnically supporting a small laser pointer for the Sense3 module.

Scan Base
A board for electrically connecting to a Scan Panel.

Scan Panel
A board for mounting on top of a servo horn. This typically used to mount other sensors, such as
sonar or IR distance sensors, to be swept back and forth. From revision B on, this board is used to
electrically connect to a Sense3 module.

Servor Adaptor 0.4
This board is used for adapting servos with .4 inch mounting hole on systems that "Lego" stud
spacing.

Shaft Sense 2
This module is meant to pick up a quadrature single from shaft mounted optical encoder wheel.

 RoboBricks Introduction

Robobricks Catagories 21

http://www.robot-electronics.co.uk/htm/srf04.shtml
http://www.robot-electronics.co.uk/
http://www.robot-electronics.co.uk/
http://www.robot-electronics.co.uk/htm/srf04tech.htm

SRF Holder
This board is used to hold a SRF04 module for sonar distance sensing.

Strut 1x2
This is just a small piece of PCB with two holes for Lego studs.

Strut 1x4
This is just a small piece of PCB with four holes for Lego studs.

Strut 1x8
This is just a small piece of PCB with eight holes for Lego studs.

Twin Gear Sensor Left
This module is designed to fit into the left side of a Tamiya Twin Gear motor box and extract a
quadrature signal off of one of the gears.

Twin Gear Sensor Right
This module is designed to fit into the right side of a Tamiya Twin Gear motor box and extract a
quadrature signal off of one of the gears.

Debug Robobricks

The following Debugging Modules are under active development:

Activity9
The Activity4 Module is used to detect communication activity between two Modules.

Debug16
The Debug16 Module is used to view up to 16 8−bit data values inside of many Module modules.

Emulate
The Emulate board uses an 28−pin PIC16F876 with flash memory to emulate a PIC12C519, a
PIC12C672, or a PIC16C505. The PIC16F876 has flash memory so it is easier to erase than the other
parts which require a UV light.

Harness
The Harness Module is used as a testing harness for testing other Modules. The Harness Module has
an RS−232 connection and a connection to a single slave Module.

Tether
The Tether Module provides a wire connection between a master Module and a computer via a
standard telephone extension cord. The connection to the computer is via a standard 9−pin RS−232
connector.

Obsolete Modules

The obsolete Modules are listed below:

Activity4 (Use Activity9 instead!)
The Activity4 Module is used to detect communication activity between two Modules.

AnalogIn4
The AnalogIn4 Module allows for the input of up to 4 analog voltages between 0 and 5 volts with a
resolution of 8 bits.

AIROD2 (Use AIROD4 instead!)
The AIROD2 Module is used to measure distances using up to 2 the Sharp® GPD2D12 analog
infrared distance measurement units.

AIROD4
The AIROD4 Module uses the Sharp® GP2D12 analog infrared distance measurement device to
measure distances between 3 and 30 centimeters. Currently, the GP2D12 seems to cost about half

 RoboBricks Introduction

Robobricks Catagories 22

what the GP2D05 used in the BIROD2 Module.
AIROD5

The AIROD4 Module uses the Sharp® GP2D12 analog infrared distance measurement device to
measure distances between 3 and 30 centimeters. Up to five GP2D12's can be supported.

BIROD2 (Use BIROD5 instead!)
The BIROD2 Module is used to connect to up to 2 of the Sharp® GP2D05 IROD (InfraRed Optical
Distance) measuring sensors. This version of the Sharp chip provides a single bit of information for
when the sensor is within a fixed distance an object.

BIROD5
The BIROD2 Module is used to connect to up to 5 of the Sharp® GP2D05 IROD (InfraRed Optical
Distance) measuring sensors. This version of the Sharp chip provides a single bit of information for
when the sensor is within a fixed distance an object.

Bench (Use a master Module instead)
The Bench Module provides a way to provide power to a bunch of Modules via a standard 5 volt
bench supply. It has two banana plugs to provide the connection.

BS2Hub8
The BS2Hub8 module provides a master Module controlled by the Basic Stamp II® from Parallax®.
This module has a battery conntection, power switch, and 5 volt linear voltage regulator. It has hub
connections for controlling up to 8 Modules. This module has morphed into the MicroBrain8 module.

Compass360
The Compass360 Module uses the 1655 analog compass module from Dinsmore Instrument
Company. It can provide a resolution that is good to about 1 in 256 (1.4 degree.) The magnetic
environment that a robot operates in can generate deviations of 10's of degrees however.

Hub8 (Use a master Module instead)
The Hub8 Module can connect up to 8 slave Modules.

In8 (Use InOut10 instead!)
The In8 Module will read in 8 bits of data.

InOut4 (Use InOut10 instead!)
The InOut4 Module allows for the bi−directional input or output of up to 4 signals. The direction of
input or output can be changed dyamically. This Module can be used to talk to a serial bus such as
I2C.

InOut10
The InOut10 Module has 10 I/O lines that can be used for input or output. A line can be changed from
input to output and back under program control. This module replaces Out10, In8, and InOut4
Modules.

IRSense2
The IRSense2 Module is used seek out IR Beacons and do simple proximity detection.

IRSense3
The IRSense3 module is used to do simple IR proximity detection in three directions.

LED4 (Use LED10 instead)
The LED4 Module provides the ability to output 4 bits to 4 on board LED's.

Light4
The Light4 Module provides a way to use inexpensive IR emitter/detector pairs to sense changes in
surface reflectivity. The input level is renal flexibility in control.ad as an analog value to provide
additional flexibility in control.

Motor2
The Motor2 Module can control up to two small DC motors. The motor voltage input can range from
5 volts to 24 volts. The Motor2 Module is capable of electronic breaking.

Motor3
The Motor3 Module allows for control of up to three small DC motors via pulse width modulation.
The motor voltage input can range from 1 volt to 24 volts. There is no electronic breaking for the

 RoboBricks Introduction

Robobricks Catagories 23

http://www.parallaxinc.com/
http://dinsmoregroup.com/dico/
http://dinsmoregroup.com/dico/

Motor3 Module.
MotorScan

The MotorScan Module is used to provide horizontal rotational scan platform based on the Tamiya
Universal Gear Box. A combination of laser head, sonar, and IR sensors can be placed on the vertical
shaft and rotated around.

Out10 (Use InOut10 instead!)
The Out10 Module provides the ability to output 10 digital bits to a terminal strip.

OOPicHub10
The OOPicHub15 is an adaptor board for the OOPic by Savage Innovations. The newer OOPIC
module that is pin compatible with the Parallax Basic Stamp II is now the preferred way to go

PIC16F876 (Use PIC876Hub10 instead!)
The PIC16F876 master Module is based around the PIC16F876 microcontroller from MicroChip®.
This microcontroller has the ability to write into its own program memory without requiring any
additional voltages or hardware.

ProtoPIC8Pin (Use ProtoPIC instead!)
The ProtoPIC8Pin Module is a prototype board for building Modules using an 8−pin PIC. ProtoPIC
works with 8 and 14−pin PIC's.

Shaft2
The Shaft2 Module can keep track of the quadrature encoding of 2 shaft encoders.

Sonar1
The Sonar1 Module provides an active sonar range finder that can measure distances 5 centimeters to
3 meters. It uses some inexpensive ultrasound transducers (~$6US).

Threshold4 (Use Light4 instead!)
The Threshold4 Module consists of 4 analog voltage comparators. Each comparator compares an
input voltage against a fixed voltage that is set a small potentiometer. There is one potentiometer per
comparator. The resulting 4 binary bits of data are avaiable for querying.

Copyright (c) 1999−2002 by Wayne C. Gramlich. All rights reserved.

 RoboBricks Introduction

Robobricks Catagories 24

http://www.oopic.com/home.htm
http://www.oopic.com/
http://www.microchip.com/

	Table of Contents
	 RoboBricks Introduction
	 RoboBricks Project News
	 RoboBricks Specifications
	 Table of Contents
	 1 Introduction
	 2 Software Protocol
	 3 Interrupts
	 4 Baud Rate Control
	 5 Electrical Specification

	 RoboBricks Modules
	 Table of Contents
	 Robobricks Catagories

