This is the Revision B verion of the <u>IREdge4 Module</u>. The status of this project is <u>finished</u>.

IREdge4 Module (Revision A)

Table of Contents

This document is also available in <u>PDF</u> format.

- 1. Introduction
- 2. Programming
- 3. Hardware
 - ♦ 3.1 Circuit Schematic
 - ♦ 3.2 Printed Circuit Board
- 4. Software
- <u>5. Issues</u>

1. Introduction

The IREdge4 Module can connect to up to 4 Photo Sensors (combined light emitter with photodetector.) The inputs are done using analog to digital converters rather than just binary inputs. There are 4 potentiometers to control the current throught the light emitters and 4 pententionmeters to control the gain of the returned signal.

2. Programming

The IREdge4 Module is continuously reading the analog inputs from its four A/D pins. The controlling program can just read the results of the digital conversion, or it can have the result down converted into a single binary bit. Each pin has has a threshold high and threshold low register that is used for the down conversion. Whenever the digital conversion exceeds the high threshold register, the down conversion results in a 1. Whenever the digital conversion is lower than the low threshold register, the down conversion results in a 0. A hysterisis effect can be introduced by having some spread between the high and low threshold values.

After the down coversions to binary bits, the result is 4-bits of binary data. A complement mask can be used to selectively invert individual bits in the 4-bit data.

The IREdge4 Module supports <u>Module Interrupt Protocol</u> for those lines that are being used as inputs. The interrupt pending bit is set whenever the the formula:

$$L\&(\sim I) \mid H\&I \mid R\&(\sim P)\&I \mid F\&P\&(\sim I)$$

is non-zero, where:

- I is the current input bits XOR'ed with the complement mask (C)
- P is the previous value of I
- L is the low mask
- H is the high mask
- R is the raising mask
- F is the falling mask

and

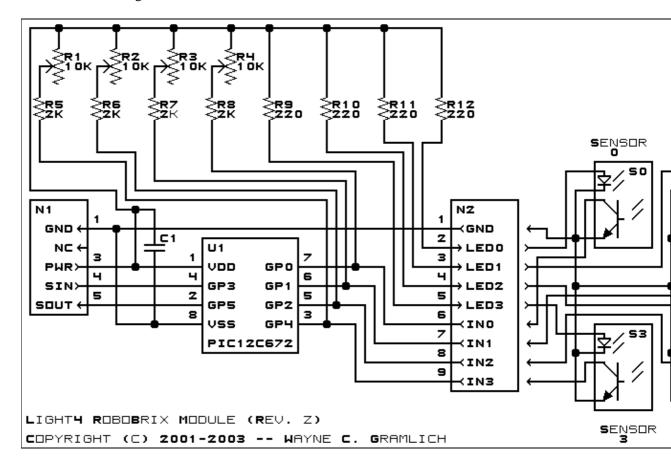
- ~ is bit—wise complement
- | is bit-wise OR
- & is bit-wise AND

Once the interrupt pending bit is set, it must be explicitly cleared by the user.

In addition to the <u>common shared commands</u> and the <u>shared interrupt commands</u>, the IREdge4 Module supports following commands:

Command	Send/ Receive			By	te	Val	lue			Discussion
Command		7	6	5	4	3	2	1	0	
Read Pin	Send	0	0	0	0	0	0	b	b	Read pin bb and respond with 8-bit value vvvvvvvv
	Receive	v	ν	v	ν	v	v	v	ν	
Read Binary Values	Send	0	0	0	0	0	1	0	0	Return the binary values <i>abcd</i> (after XOR'ing with complement mask)
	Receive	0	0	0	0	a	b	c	d	
Read Raw Binary	Send	0	0	0	0	0	1	0	1	Return the raw binary values <i>abcd</i> (no XOR with complement mask)
	Receive	0	0	0	0	a	b	c	d	
Reset	Send	0	0	0	0	0	1	1	0	Reset everything to zero
Read Complement Mask	Send	0	0	0	0	1	0	0	0	Return the complement mask cccc
	Receive	0	0	0	0	c	c	c	c	
Read High Mask	Send	0	0	0	0	1	0	0	1	Return the high mask <i>hhhh</i>
	Receive	0	0	0	0	h	h	h	h	Return the high mask muun
Read Low Mask	Send	0	0	0	0	1	0	1	0	Return the high mask <i>llll</i>
	Receive	0	0	0	0	l	l	l	l	
Read Raising Mask	Send	0	0	0	0	1	0	1	1	Return the raising mask <i>rrrr</i>
	Receive	0	0	0	0	r	r	r	r	
Read Falling Mask	Send	0	0	0	0	1	1	0	0	Return the falling mask ffff
	Receive	0	0	0	0	f	f	f	f	
Read High Threshold	Send	0	0	0	1	0	0	b	b	Return high threshold for pin <i>bb</i> of <i>hhhhhhhh</i>
	Receive	h	h	h	h	h	h	h	h	
Read Low Threshold	Send	0	0	0	1	0	1	b	b	Return low threshold for pin bb of llllllll
	Receive	l	l	l	l	l	l	l	l	
Set High Threshold	Send	0	0	0	1	1	0	b	b	Set high threshold for pin bb to hhhhhhhh
	Send	h	h	h	h	h	h	h	h	
Set Low Threshold	Send	0	0	0	1	1	1	b	b	Set low threshold for pin bb to llllllll
	Send	l	l	l	l	l	l	l	l	
Set Complement Mask	Send	0	0	1	0	c	c	c	c	Set complement mask to cccc
Set High Mask	Send	0	1	0	0	h	h	h	h	Set high mask to <i>hhhh</i>
Set Low Mask	Send	0	1	0	1	l	l	l	l	Set low mask to <i>llll</i>
Set Raising Mask	Send	0	1	1	0	r	r	r	r	Set raising mask to rrrr
Set Falling Mask	Send	0	1	1	1	f	f	f	f	Set falling mask to ffff
Read Interrupt Bits	Send	1	1	1	0	1	1	1	1	

IREdge4 Module (Revision A)


	Receive	0	0	0	0	0	0	e	μ.	Return the interrupt pending bit p and the interrupt enable bit e .
Set Interrupt Commands	Send	1	1	1	1	0	c	c	c	Set Interrupt Command ccc.
Shared Commands	Send	1	1	1	1	1	c	c	c	Execute common shared command ccc

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the IREdge4 Module is shown below:

The parts list kept in a separate file — <u>iredge4.ptl</u>.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

iredge4 back.png

The solder side layer.

iredge4 front.png

The component side layer.

3. Hardware 3

iredge4 artwork.png

The artwork layer.

iredge4.gbl

The RS-272X "Gerber" back (solder side) layer.

iredge4.gtl

The RS-272X "Gerber" top (component side) layer.

<u>iredge4.gal</u>

The RS-272X "Gerber" artwork layer.

iredge4.drl

The "Excellon" NC drill file.

iredge4.tol

The "Excellon" tool rack file.

4. Software

The IREdge4 software is available as one of:

iredge4.ucl

The μCL source file.

iredge4.asm

The resulting human readable PIC assembly file.

iredge4.lst

The resulting human readable PIC listing file.

iredge4.hex

The resulting Intel[®] Hex file that can be fed into a PIC programmer.

5. Issues

Any fabrication issues will be listed here.

Copyright (c) 2001–2004 by Wayne C. Gramlich. All rights reserved.

4. Software 4