This is the Revision A verion of the InOut10 RoboBrick. The status of this project is that it has been replaced by the Revision B version.

InOut10 Robobrick (Revision A)

Table of Contents

This document is also available in PDF format.

- 1. Introduction
- 2. Programming
- 3. Hardware
- 3.1 Circuit Schematic
- 3.2 Printed Circuit Board
- 4. Software
- 5. Issues

1. Introduction

The InOut10 RoboBrick provides the ability to input and output 10 bits of data. The direction of each bit can be changed under program control.

2. Programming

The basic operation is to send a query to the In8 RoboBrick to read the 4 bits of data. The programmer can download a complement mask to cause any of the bits to be complemented prior to reading.

The In8 RoboBrick supports RoboBrick Interrupt Protocol. The interrupt pending bit is set whenever the the formula:

$$
\text { L\&(~I) |H\&I } \mid \text { R\& (~P)\&I } \mid \mathrm{F} \& P \&(\sim \mathrm{I})]
$$

is non-zero, where:

- I is the current input bits XOR'ed with the complement mask (C)
- P is the previous value of I
- L is the low mask
- H is the high mask
- R is the raising mask
- F is the falling mask
and
- ~ is bit-wise complement
- | is bit-wise OR
- \& is bit-wise AND

Once the interrupt pending bit is set, it must be explicitly cleared by the user.
The In8 RoboBrick supports both the standard shared commands and the shared interrupt commands in addition to the following commands:

Command	Send/ Receive	Byte Value									Discussion
		7	6	5	4	3	2	1	0		
Read Inputs Low	Send	0	0	0	0	0	0	0	0		Return low order 5-bits of input iiiii (after XOR'ing with complement mask)
	Receive	0	0	0	i	i		i			
Read Inputs High	Send	0	0	0	0	0	0	0	1		Return high order 5-bits of input IIIII (after XOR'ing with complement mask)
	Receive	0	0	0	I	I		I	I		
Read Complement Mask Low	Send	0	0	0	0	0	0	1	0		Return low order 5-bits of complement mask ccccc
	Receive	0	0	0	c	c	c	c	c		
Read Complement Mask High	Send	0	0	0	0	0	0	1	1		Return high order 5 bits of complement mask CCCCC
	Receive	0	0	0	C	C	C	C	C		
Read Direction Mask Low	Send	0	0	0	0	0	1	0	0		Return low order 5-bits of direction mask $d d d d d$
	Receive	0	0	0	d	d	d	d	d		
Read Direction Mask High	Send	0	0	0	0	0	1	0	1		Return high order 5 bits of direction mask $D D D D D$
	Receive	0	0	0	D	D	D	D	D		
Read Raw Low	Send	0	0	0	0	0	1	1	0		Return low order 5-bits of raw input data r rrrr (without XOR'ing with complement mask)
	Receive	0	0	0	r	r	r	r	r		
Read Raw High	Send	0	0	0	0	0	1	1	1		Return high order 5-bits of raw input data $R R R R R$ (without XOR'ing with complement mask)
	Receive	0	0	0	R	R	R	R	R		
Read Low Mask Low	Send	0	0	0	0	1	0	0	0		Return low order 5-bits of low mask lllll
	Receive	0	0	0	l	l	l	l	l		
	Send	0	0	0	0	1	0	0	1		

Read Low Mask High	Receive	0	0	0	L	L	L	L	L	Return high order 5-bits of low										
mask LLLLL											$	$	Read High Mask Low	Send	0	0	0	0	1	0
:---	:---	:---	:---	:---	:---	:---	:---													

Set Falling Mask Low	Send	0	0	0	f	f	f	f	f	Set low order 5－bits of the falling mask to $f f \int f f$
Set Falling Mask High	Send	0	0	0	1	1	1	1	1	Set high order 5－bits of the
	Send	0	0	0	F	F	F	F	F	falling mask to FFFFF

3．Hardware

The hardware consists of a circuit schemati申 and a printed circuit board．

3．1 Circuit Schematic

The schematic for the InOut10 RoboBriqk is shown below：

INロபT10 RロBDBRILK MDDLLE（REU．R）
CロPYRIGHT（に）Zロロ1－－WAYNE C．GRAMLILH

The parts list kept in a separate file－－inout 10 ptl ．
－

3.2 Printed Circuit Board

The printed circuit files are listed below:

```
inout10 back.png
    The solder side layer.
inout10 front.png
    The component side layer.
inout10 artwork.png
    The artwork layer.
inout10.gbl
    The RS-274X "Gerber" back (solder side) layer.
inout10.gtl
    The RS-274X "Gerber" top (component side) layer.
inout10.gal
    The RS-274X "Gerber" artwork layer.
inout10.drl
    The "Excellon" NC drill file.
inout10.tol
    The "Excellon" tool rack file.
```


4. Software

The InOut 10 software is available as one of:
inout10.ucl
The μ CL source file.
inout10.asm
The resulting human readable PIC assembly file.
inout10.lst
The resulting human readable PIC listing file.
inout10.hex
The resulting Intel ${ }^{\circledR}$ Hex file that can be fed into a PIC12C5xx programmer.
The InOut10 test suite is available as one of:

inout10 test.ucl

The $\mu \mathrm{CL}$ source file.
inout10 test.asm
The resulting human readable PIC assembly file.
inout10 test.lst
The resulting human readable PIC listing file.
inout10 test.hex
The resulting Intel ${ }^{\circledR}$ Hex file that can be fed into a PIC16F84 programmer.

5. Issues

The following issues have come up:

InOut10 RoboBrick (Revision A)

- The holes for N1 (size 3) are too large, make them smaller (size 2).
- The holes for N2 and N3 (size 2) are too small, make them larger (size 4).
- Move the lettering next to N2 to the left a little.
- Move the lettering above N3 up a little.
- Move U1 and C1 up and to the left.
- Move N3 to the left by .05 inches

Copyright (c) 2001-2002 by Wayne C. Gramlich. All rights reserved.

InOut10 RoboBrick (Revision A)

InOut10 RoboBrick (Revision A)

A. Appendix A: Parts List

```
# Parts list for InOut10 RoboBrick (Rev. A)
#
C1: Capacitor10pF - 10 pF Ceramic Capacitor [Jameco: 15333]
N1: Headerlx5.RBSlave - 1x5 Male Header [5/40 Jameco: 160881]
N2: TerminalStrip8.InOut10 - 8 Junction Terminal Strip [4 Jameco: 189675]
N3: TerminalStrip4.InOut10 - 4 Junction Terminal Strip [2 Jameco: 189675]
U1: PIC16C505.InOut10 - Microchip PIC16C505 [Digikey: PIC16C505-04/P-ND]
```


B. Appendix B: Artwork Layer

C. Appendix C: Back (Solder Side) Layer

D. Appendix D: Front (Component Side) Layer
(8)
(8)
(8)
(8)

INロபT10-R

3333
 0 (2)

12

(2) 2 2 2
(B)
(8)
(B)
(B)

