This is the Revision A verion of the Digital8 module. The status of this project is finished.

Digital8 Module (Revision C)

Table of Contents

This document is also available in <u>PDF</u> format.

- <u>1. Introduction</u>
- <u>2. Programming</u>
- <u>3. Hardware</u>
 - ◆ <u>3.1 Circuit Schematic</u>
 - ◆ <u>3.2 Printed Circuit Board</u>
- <u>4. Software</u>
- <u>5. Issues</u>

1. Introduction

The Digital8 module provides the ability to input and output 8 bits of digital data. The direction of each bit can be changed under program control.

2. Programming

The programmer can download a complement mask to cause any of the bits to be complemented prior to reading.

The Digital8 module supports the <u>Interrupt Protocol</u>. The interrupt pending bit is set whenever the the formula:

```
L\&(\sim I) \mid H\&I \mid R\&(\sim P)\&I \mid F\&P\&(\sim I)]
```

is non-zero, where:

- I is the current input bits XOR'ed with the complement mask (C)
- P is the previous value of I
- L is the low mask
- H is the high mask
- R is the raising mask
- F is the falling mask

and

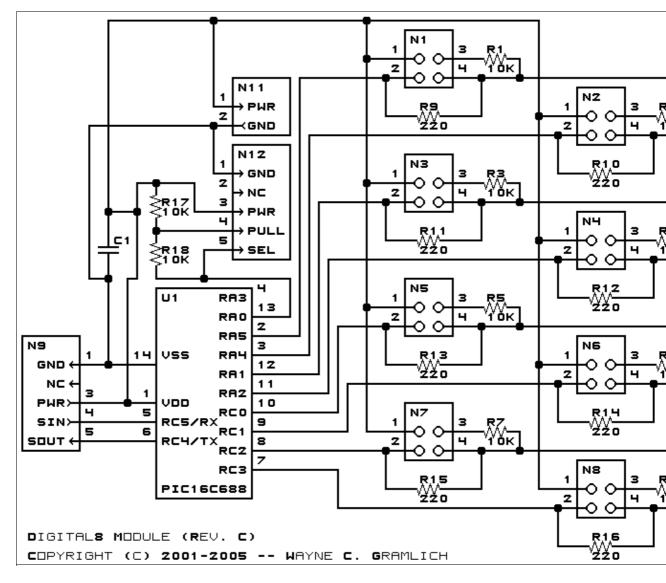
- ~ is bit–wise complement
- | is bit-wise OR
- & is bit-wise AND

Once the interrupt pending bit is set, it must be explicitly cleared by the user.

The Digital8 module supports both the standard shared commands and the shared interrupt commands in
addition to the following commands:

Commond	Send/			By	te	Va	lue			Discussion
Command	Receive	7	6	5	4	3	2	1	0	
Read Inputs	Send	0	0	0	0	0	0	0	0	Return 8–bits of input <i>iiii iiii</i> (after XOR'ing with complement mask)
	Receive	i	i	i	i	i	i	i	i	
Read Outputs	Send	0	0	0	0	0	0	0	1	Return 8–bits of the outputs <i>0000</i>
	Receive	0	0	0	0	0	0	0	0	<i>oooo</i> (after XOR'ing with complement mask.)
Read Complement Mask	Send	0	0	0	0	0	0	1	0	Return 8–bits of complement mask <i>cccc cccc</i>
	Receive	с	с	с	с	с	с	с	с	
Read Direction	Send	0	0	0	0	0	0	1	1	Return 8–bits of direction mask
Mask	Receive	d	d	d	d	d	d	d	d	dddd dddd
Read Low Mask	Send	0	0	0	0	0	1	0	0	Return 8–bits of low mask <i>llll llll</i>
Read LOW Wask	Receive	l	l	l	l	l	l	l	l	Return 8–bits of 10w mask <i>titt titt</i>
Read High Mask	Send	0	0	0	0	0	1	0	1	Return 8–bits of the high mask
	Receive	h	h	h	h	h	h	h	h	hhhh hhhh
Read Rising Mask	Send	0	0	0	0	0	1	1	0	Return 8-bits of the rising mask
	Receive	r	r	r	r	r	r	r	r	rrrr rrrr
Read Falling Mask	Send	0	0	0	0	0	1	1	1	Return 8–bits of the falling mask
	Receive	f	f	f	f	f	f	f	f	ffff ffff
Read Raw	Send	0	0	0	0	1	0	0	0	Return 8–bits of raw input data <i>rrrr</i> <i>rrrr</i> (without XOR'ing with complement mask)
	Receive	r	r	r	r	r	r	r	r	
Reset Outputs	Send	0	0	0	1	0	0	0	0	Set all 8 bits of outputs to 0 (then XOR with complement mask).
Set Outputs	Send	0	0	0	1	0	0	0	1	Set output bits to <i>0000 0000</i> .
	Send	0	0	0	0	0	0	0	0	
Set Complement	Send	0	0	0	1	0	0	1	0	Set 8–bits of complement mask to
Mask	Send	с	с	с	с	с	с	с	с	
	Send	0	0	0		-	0	1	1	Set 8-bits of direction mask to <i>dddd dddd</i> 1=input; 0=output
Set Direction Mask	Send	d	d	d		d	d	d	d	
Set Low Mask	Send	0	0	0	1	0	1	0	0	Set 8–bits of low mask to <i>llll llll</i>
	Send	l	l	l	l	l	l	l	l	
Set High Mask	Send	0	0	0	1	0	1	0	1	Set 8–bits of the high mask to <i>hhhh</i> hhhh
	Send	h	h	h	h	h	h	h	h	
Set Rising Mask	Send	0	0	0	1	0	1	1	0	Set 8–bits of the rising mask to <i>rrrr rrrr</i>
	Send	r	r	r	r	r	r	r	r	
Set Falling Mask	Send	0	0	0	1	0	1	1	1	Set 8–bits of the falling mask to <i>ffff</i>
	Send	f	f	f	f	f	f	f	f	
Set Outputs Raw	Send	0	0	0	1	1	0	0	0	Set 8-bits to <i>0000 0000</i> with no
	Send	0	0	0	0	0	0	0	о 0	complement mask.
	20114	Ľ	Ľ	Ľ	v	Ľ	~	Ľ	Ľ	•

Reset Everything	Send	0	0	0	1	1	0	0	1	Reset all registers to 0 and set direction bits to 1 (input)
Set Output Bit	Send	0	0	1	0	v	b	b	b	Set output bit <i>bbbb</i> to <i>v</i>
Set Outputs Low	Send	0	1	0	0	l	l	l	l	Set low order 4–bits of Outputs to <i>llll</i> and then XOR complement mask
Set Outputs High	Send	0	1	0	1	h	h	h	h	Set high order 4–bits of Outputs to <i>hhhh</i> and and then XOR complement mask
Set Direction Low	Send	0	1	1	0	l	l	l	l	Set low order 4–bits of direction to <i>llll</i> .
Set Direction High	Send	0	1	1	1	h	h	h	h	Set high order 4–bits of direction to <i>hhhh</i> .
<u>Set Interrupt</u> Commands	Send	1	1	1	1	0	с	с	с	Set Interrupt Command ccc.
Shared Commands	Send	1	1	1	1	1	с	с	с	Execute Shared Command ccc


3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the Digital8 module is shown below:

Digital8 Module (Revision C)

The parts list kept in a separate file -- <u>digital8.ptl</u>.

3.2 Printed Circuit Board

The printed circuit files are listed below:

<u>digital8 back.png</u> The solder side layer. <u>digital8 front.png</u> The component side layer. <u>digital8 artwork.png</u> The artwork layer. <u>digital8.gbl</u> The RS-274X "Gerber" back (solder side) layer. <u>digital8.gtl</u> The RS-274X "Gerber" top (component side) layer. <u>digital8.gal</u> The RS-274X "Gerber" artwork layer. <u>digital8.drl</u> The "Excellon" NC drill file. <u>digital8.tol</u>

The "Excellon" tool rack file.

3.3 Construction Instructions

The <u>construction Instructions</u> are located in a separate file to be a little more printer friendly.

4. Software

The Digital8 software is available as one of:

<u>digital8.ucl</u> The μCL source file. <u>digital8.asm</u> The resulting human readable PIC assembly file. <u>digital8.lst</u> The resulting human readable PIC listing file. <u>digital8.hex</u> The resulting Intel[®] Hex file.

5. Issues

Any fabrication issues will be listed here.

Copyright (c) 2001–2005 by Wayne C. Gramlich. All rights reserved.