This is the Revision A verion of the Compass 360 RoboBrick. The status of this project is that it has been replaced by the revision B version.

Compass360 Robobrick (Revision A)

Table of Contents

This document is also available in PDF format.

- 1. Introduction
- 2. Programming
- 3. Hardware
- 3.1 Circuit Schematic
- 3.2 Printed Circuit Board
- 4. Software
- 5. Issues
- A. Appendix - Designing the Amplifiers

1. Introduction

The Compass360 RoboBrick uses a 1625 analog compass module from Dinsmore Instrument Company to detect magnetic bearing with a resolution approximately 10 bits. You should be informed that the magnetic enviroment inside dwellings can induce substantial errors in magnetic bearing of more than 10 degrees. (You have been warned!)

2. Programming

There is no programming specification yet.

3. Hardware

The hardware consists of a circuit schematic and a printed circuit board.

3.1 Circuit Schematic

The schematic for the Compass 360 RoboBrick is shown below:

The parts list kept in a separate file --compass360.ptl.

3.2 Printed Circuit Board

The printed circuit board files are listed below:

compass 360 back.png

The solder side layer.

compass 360 front.png

The component side layer.
compass 360 artwork.png
The artwork layer.
compass $360 . \mathrm{gbl}$
The RS-274X "Gerber" back (solder side) layer.
compass $360 . g$ tl
The RS-274X "Gerber" top (component side) layer.
compass $360 . \mathrm{gal}$
The RS-274X "Gerber" artwork layer.

compass $360 . d r l$

The "Excellon" NC drill file.
compass $360 . t o l$
The "Excellon" tool rack file.

4. Software

There is no software yet.

5. Issues

The following issues have come up:

- The input signals should go to plus inputs, not the minus inputs. (I.e. they are swapped.)
- There needs to be a 1 volt adjustment voltage fed into the minus input, not Vcc.
- The revision A brick is mislabeled as ANALOGIN4-A and should be labeled COMPASS360-A.
- Make the holes for N1 (size 3) smaller (size 2).

A. Appendix - Designing the Amplifiers

A1. Basic Amplifier Equations

In order to understand how the resistors around the operational amplifiers are picked it is necessary to analyze one of the amplifier cicuits. We'll do the analysis the amplifier below:

Let's call $\mathrm{V}_{\text {in }}$ the input voltage to R_{3} and $\mathrm{V}_{\text {adj }}$ the adjustment voltage input to R_{1}.
V_{+}is the voltage input to the positive side of the operational amplifier and V_{-}is the input to the negative side. The trick with operational amplifiers is that they have very high input impedances; hence, the current into and out of both the V_{+}and V_{-}terminals is assumed to be zero. In addition, since we have a properly designed feedback circuit, the operational amplifier will work like crazy to keep V_{+}and V_{-}equal to one another; thus, we just assume that V_{+}is always equal to V_{-}. These assumptions are summarized as:
(1) $\mathrm{V}_{+}=\mathrm{V}_{-}$
(2) $\mathrm{I}_{\mathrm{V}_{+}}=0$
(3) $\mathrm{IV}_{-}=0$

R3 and R4 form a simple voltage divider of $\mathrm{V}_{\text {in }}$:
(4) $\mathrm{V}_{+}=\mathrm{V}_{\mathrm{in}} \mathrm{R}_{4} /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)$

The voltage drop across R_{1} is:
(5) $V_{R_{I}}=V_{a d j}-V_{-}$

$$
\begin{aligned}
& =V_{\text {adj }}-V_{+} \\
& =V_{\text {adj }}-V_{i n} R_{4} /\left(R_{3}+R_{4}\right)
\end{aligned}
$$

Using Ohm's law, we can compute the current through R_{1} as:

$$
\text { (6) } \begin{aligned}
I_{R_{I}} & =V_{R_{l}} / R_{l} \\
& =\left[\mathrm{V}_{\text {adj }}-\mathrm{V}_{\text {in }} \mathrm{R}_{4} /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)\right] / \mathrm{R}_{1} \\
& =\mathrm{V}_{\mathrm{adj}} / \mathrm{R}_{1}-\mathrm{V}_{\mathrm{in}} \mathrm{R}_{4} /\left[\mathrm{R}_{1}\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)\right]
\end{aligned}
$$

Since there is no current into V_{-}, the current through R_{2} is the same as the current through R_{1} :
(7) $I_{R 2}=I_{R_{1}}$

The voltage drop across R_{2} is computed using Ohm's law as:
(8) $V_{R_{2}}=I_{R_{2}} R_{2}$

$$
\begin{aligned}
& =\mathrm{I}_{\mathrm{R}_{1}} \mathrm{R}_{2}= \\
& =\left[\mathrm{V}_{\mathrm{adj}} / \mathrm{R}_{1}-\mathrm{V}_{\text {in }} \mathrm{R}_{4} /\left[\mathrm{R}_{1}\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)\right]\right] \mathrm{R}_{2} \\
& =\mathrm{V}_{\mathrm{adj}} \mathrm{R}_{2} / \mathrm{R}_{1}-\mathrm{V}_{\text {in }} \mathrm{R}_{2} \mathrm{R}_{4} /\left[\mathrm{R}_{1}\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)\right]
\end{aligned}
$$

The voltage out $\left(\mathrm{V}_{\text {out }}\right)$ is:

$$
\text { (9) } \begin{aligned}
V_{\text {out }} & =V_{-}-V_{R_{2}} \\
& =\mathrm{V}_{+}-\mathrm{V}_{\mathrm{R}_{2}} \\
& =\mathrm{V}_{\text {in }} \mathrm{R}_{4} /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)-\left[\mathrm{V}_{\mathrm{adj}} \mathrm{R}_{2} / \mathrm{R}_{1}-\mathrm{V}_{\text {in }} \mathrm{R}_{2} \mathrm{R}_{4} /\left[\mathrm{R}_{1}\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)\right]\right] \\
& \left.=\mathrm{V}_{\text {in }} \mathrm{R}_{4} /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)-\mathrm{V}_{\mathrm{adj}} \mathrm{R}_{2} / \mathrm{R}_{1}+\mathrm{V}_{\text {in }} \mathrm{R}_{2} \mathrm{R}_{4} /\left[\mathrm{R}_{1}\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)\right]\right] \\
& =\mathrm{V}_{\text {in }} \mathrm{R}_{4} /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)+\mathrm{V}_{\text {in }} \mathrm{R}_{2} \mathrm{R}_{4} /\left[\mathrm{R}_{1}\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)\right]-\mathrm{V}_{\mathrm{adj}} \mathrm{R}_{2} / \mathrm{R}_{1} \\
& =\mathrm{V}_{\text {in }}\left[\mathrm{R}_{4} /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)+\mathrm{R}_{2} \mathrm{R}_{4} /\left[\mathrm{R}_{1}\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)\right]\right]-\mathrm{V}_{\text {adj }} \mathrm{R}_{2} / \mathrm{R}_{1} \\
& =\mathrm{V}_{\text {in }}\left[\mathrm{R}_{4} /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)+\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right) \times \mathrm{R}_{4} /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right)\right]-\mathrm{V}_{\text {adj }} \mathrm{R}_{2} / \mathrm{R}_{1} \\
& =\mathrm{V}_{\text {in }}\left[\mathrm{R}_{4} /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right) \times\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right)\right]-\mathrm{V}_{\mathrm{adj}} \mathrm{R}_{2} / \mathrm{R}_{1} \\
& =\mathrm{V}_{\text {in }}\left[\left(1+\mathrm{R}_{2} / \mathrm{R}_{1}\right) \times \mathrm{R}_{4} /\left(\mathrm{R}_{3}+\mathrm{R}_{4} 4\right)\right]-\mathrm{V}_{\mathrm{adj}} \mathrm{R}_{2} / \mathrm{R}_{1}
\end{aligned}
$$

The equation can be rewritten as:
(10) $V_{\text {out }}=V_{\text {in }} \times G-V_{\text {off }}$
where the amplifier gain is G :
(11) $G=\left(1+R_{2} / R_{1}\right) \times R_{4} /\left(R_{3}+R_{4}\right)$
and the voltage offset is $V_{\text {off }}$:
(12) $\mathrm{V}_{\text {off }}=\mathrm{V}_{\mathrm{adj}} \mathrm{R}_{2} / \mathrm{R}_{1}$

A2 Initial Resistor Values

For the first iteration of resistor values, we want the amplifier to take the voltage output from the Dinsmore 1655 analog compass module of 1.9 to 3.1 volts and convert that to a voltage swing of 0 to 5 volts (V_{cc}).

Let $\mathrm{V}_{\text {low }}$ lowest input voltage and $\mathrm{V}_{\text {high }}$ be the hight input voltage. What we want is:

$$
\text { (13) } \begin{aligned}
V_{\text {out }} & =\left(V_{\text {in }}-V_{\text {low }}\right)\left[V_{\text {ccd }}\left(V_{\text {high }}-V_{\text {low }}\right)\right] \\
& =\mathrm{V}_{\text {in }}\left[\mathrm{V}_{\text {cc }} /\left(\mathrm{V}_{\text {high }}-\mathrm{V}_{\text {low }}\right)\right]-\mathrm{V}_{\text {low }}\left[\mathrm{V}_{\text {cd }}\left(\mathrm{V}_{\text {high }}-\mathrm{V}_{\text {low }}\right)\right]
\end{aligned}
$$

Matching to equation (13) to equation (10) in the previous section, the gain (G) is:
(14) $\mathrm{G}=\mathrm{V}_{\mathrm{cc}} /\left(\mathrm{V}_{\text {high }}-\mathrm{V}_{\text {low }}\right)$
and the voltage offset ($\mathrm{V}_{\text {off }}$) is:
(15) $\mathrm{V}_{\text {off }}=\mathrm{V}_{\text {low }}\left[\mathrm{V}_{\text {cc }} /\left(\mathrm{V}_{\text {high }}-\mathrm{V}_{\text {low }}\right)\right]$

Starting with the voltage offset:

$$
\text { (16) } \begin{aligned}
V_{\text {off }} & =V_{\text {low }}\left[V_{\text {cc }} /\left(V_{\text {high }}-V_{\text {low }}\right)\right] \\
& =1.9[5 /(3.1-1.9)] \\
& =1.9(5 / 1.2) \\
& =1.9 \times 4.17 \\
& =7.92
\end{aligned}
$$

Now combining equations (16) and (12) from the previous section, we get:

$$
\text { (17) } \mathrm{V}_{\text {off }}=\mathrm{V}_{\mathrm{adj}} \mathrm{R}_{2} / \mathrm{R}_{1}
$$

At this point we have to pick a value for $\mathrm{V}_{\text {adj. }}$. Initially, I tried to set $\mathrm{V}_{\text {adj }}$ to V_{cc}, but when I worked through the equations, $R 4$ had a negative value. Since I can not buy negative resistor values, I decided to drop $\mathrm{V}_{\text {adj }}$ down a little. At $\mathrm{V}_{\text {adj }}$ equal to 2.5 volts, it started to work. I ultimately decided to set $\mathrm{V}_{\text {adj }}$ to 1 volt because I liked how the numbers worked out a little better.

Now substituting in values for $V_{\text {off }}$ and $V_{\text {adj }}$ we get:
(18) $7.92=1 \times \mathrm{R}_{2} / \mathrm{R}_{1}$
or
(19) $\mathrm{R}_{2} / \mathrm{R}_{1}=7.92$

I'll pick R_{1} to be 100 K Ohms thereby getting:
(20) $\mathrm{R}_{2} / 100 \mathrm{~K}=7.92$
or
(21) $\mathrm{R}_{2}=792 \mathrm{~K}$

We'll round that down to 750 K Ohms.
Now switching over to the gain side of the equation:

$$
\text { (22) } \begin{aligned}
G & =V_{c c} /\left(V_{\text {high }}-V_{\text {low }}\right) \\
& =5 /(3.1-1.9) \\
& =5 / 1.2 \\
& =4.17
\end{aligned}
$$

Now combining equation (22) with equation (11) from the previous section, we get:

$$
\text { (21) } G=\left(1+R_{2} / R_{1}\right) \times R_{4} /\left(R_{3}+R_{4}\right)
$$

and substituting for G, R_{1} and R_{2} we get:

$$
\begin{aligned}
(22) & \left.\begin{array}{rl}
4.17 & =(1+750 K / 100 K) \times R_{4} /\left(R_{3}+R_{4}\right) \\
& =(1+7.5) \times \mathrm{R}_{4} /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right) \\
& =8.5 \times \mathrm{R}_{4} /\left(\mathrm{R}_{3}+\mathrm{R}_{4}\right) \\
(23) .49 & =R_{4} /\left(R_{3}+R_{4}\right)
\end{array}\right)
\end{aligned}
$$

Rounding .49 to .5 , and picking R_{4} to be 100 K , we can trivially solve for R_{3} to also be 100 K .
(24) $\mathrm{R}_{3}=100 \mathrm{~K}$

Thus the final values are:

$$
\begin{aligned}
& R_{1}=100 \mathrm{~K} \mathrm{Ohms} \\
& R_{2}=750 \mathrm{~K} \mathrm{Ohms} \\
& R_{3}=100 \mathrm{~K} \mathrm{Ohms} \\
& R_{4}=100 \mathrm{~K} \mathrm{Ohms} \\
& V_{a d j}=1 \mathrm{Volt}
\end{aligned}
$$

Copyright (c) 2001-2002 by Wayne C. Gramlich. All rights reserved.

Compass360 RoboBrick (Revision A)

A. Appendix A: Parts List

```
# Parts list for Compass360 RoboBrick (Rev. A)
#
C1: Capacitor10pF - 10 pF Ceramic Capacitor [Jameco: 15333]
R1: Resistor100K.Vertical - 100K Ohm 1/4 Watt Resistor [Jameco: 29997]
R2: Resistor750K.Vertical - 750K Ohm 1/4 Watt Resistor [Digikey: 750K-QBK-ND]
R3: Resistor56K.Vertical - 56K Ohm 1/4 Watt Resistor [Digikey: 56K-QBK-ND]
R4-5: Resistor100K.Vertical - 100K Ohm 1/4 Watt Resistor [Jameco: 29997]
R6: Resistor750K.Vertical - 750K Ohm 1/4 Watt Resistor [Digikey: 750K-QBK-ND]
R7: Resistor56K.Vertical - 56K Ohm 1/4 Watt Resistor [Digikey: 56K-QBK-ND]
R8-9: Resistor100K.Vertical - 100K Ohm 1/4 Watt Resistor [Jameco: 29997]
R10: Resistor750K.Vertical - 750K Ohm 1/4 Watt Resistor [Digikey: 750K-QBK-ND]
R11: Resistor56K.Vertical - 56K Ohm 1/4 Watt Resistor [Digikey: 56K-QBK-ND]
R12-13: Resistor100K.Vertical - 100K Ohm 1/4 Watt Resistor [Jameco: 29997]
R14: Resistor750K.Vertical - 750K Ohm 1/4 Watt Resistor [Digikey: 750K-QBK-ND]
R15: Resistor56K.Vertical - 56K Ohm 1/4 Watt Resistor [Digikey: 56K-QBK-ND]
R16: Resistor100K.Vertical - 100K Ohm 1/4 Watt Resistor [Jameco: 29997]
N1: Header1x5.RBSlave - 1x5 Male Header [5/40 Jameco: 160881]
U1: PIC12C672.Compass360 - Microchip PIC12C672 [Digikey: PIC12C672-04/P-ND]
U2: LM348 - Quad. Op Amp [Jameco: 23915]
Y1: DIN1655 - Dinsmore 1655 Compass Module [Dinsmore: 1655]
```


B. Appendix B: Artwork Layer

C. Appendix C: Back (Solder Side) Layer

D. Appendix D: Front (Component Side) Layer
(B)
(8)
(B)
(B)

(B)
(8)
(B)
(B)

