

Data sheet acquired from Harris Semiconductor SCHS099A – Revised March 2002

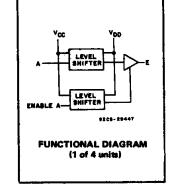
CMOS Quad Low-to-High Voltage Level Shifter Fe

High-Voltage Types (20-Volt Rating)

CD401098 contains four low-to-high-voltage level-shifting circuits. Each circuit will shift a low-voltage digital-logic input signal (A, B, C, D) with logical 1 = V_{CC} and logical 0 = V_{SS} to a higher-voltage out-put signal (E, F, G, H) with logical 1 = V_{DD} and logical 0 = V_{SS}.

The RCA-CD40109, unlike other low-tohigh level-shifting circuits, does not require the presence of the high-voltage supply (VDD) before the application of either the low-voltage supply (VCC) or the input signals. There are no restrictions on the sequence of application of VDD, VCC, or the input signals. In addition, with one exception there are no restrictions on the relative magnitudes of the supply voltages or input signals within the device maximum ratings. provided that the input signal swings between VSS and at least 0.7 VCC; VCC may exceed VDD, and input signals may exceed VCC and VDD. When operated in the mode $V_{CC} > V_{DD}$, the CD40109 will operate as a high-to-low level-shifter.

The CD40109 also features individual threestate output capability. A low level on any of the separately enabled three-state output controls produces a high-impedance-state in the corresponding output.


The CD40109B-Series types are supplied in 16-lead ceramic dual-in-line packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline package (NSR suffix), and in chip form (H suffix).

Applications:

- High-or-low level-shifting with three-state outputs for unidirectional or bidirectional bussing
- Isolation of logic subsystems using separate power supplies from supply sequencing, supply loss and supply regulation considerations

Features:

- Independence of power supply sequence considerations—V_{CC} can exceed V_{DD}, input signals can exceed both V_{CC} and V_{DD}
- Up and down level-shifting capability
- Three-state outputs with separate enable controls
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range)
 - = 1 V at V_{CC} = 5 V, V_{DD} = 10 V
 - = 2 V at V_{CC} = 10 V, V_{DD} = 15 V
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of "8" Series CMOS Devices"

CD40109B Types

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LII		
	MIN.	MAX.	UNITS
Supply-Voltage Range (For TA =			
Full Package-Temperature Range)	3	18	V

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (V_{DD})

Voltages referenced to V_{SS} Terminal)

-0.5V to +20V

INPUT VOLTAGE RANGE, ALL INPUTS

-0.5V to V_{DD} +0.5V

DC INPUT CURRENT, ANY ONE INPUT

+10mA

POWER DISSIPATION PER PACKAGE (P_{D}):

For T_{A} = -55°C to +100°C

For T_{A} = +100°C to +125°C

Derate Linearity at 12mW/°C to 200mW

DEVICE DISSIPATION PER OUTPUT TRANSISTOR

FOR T_{A} = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)

100mW

OPERATING-TEMPERATURE RANGE (T_{A})

-55°C to +125°C

STORAGE TEMPERATURE RANGE (T_{Stg})

-65°C to +150°C

LEAD TEMPERATURE (DURING SOLDERING):

At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max +265°C

INP	INPUTS OUT		
A, B, C, D	ENABLE A, B, C, D	E, F, G, H	
0	1	0	
1	1	1	
Х	0	Z	

LOGIC 0 - LOW(V_{SS}) X - DON'T CARE Z - HIGH IMPEDANCE LOGIC 1 - V_{CC} at INPUTS and V_{DD} at OUTPUTS

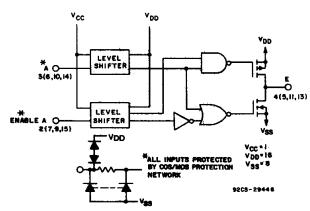


Fig.1 - CD40109B logic diagram (1 of 4 units).

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	CONDITIONS			LIMITS AT INDICATED TEMPERATURES (°C)					UNITS		
ISTIC	Vo (V)	VIN (S)	V _{DD} (V)	-55	-40	+85	+125	Min.	+25 Typ.	Max.	
Quiescent Device Current, IDD Max.		0,5	5	1	1	30	30		0.02	1	
		0,10	10	2	2	60	60		0.02	2	
		0,15	15	4	- 4	120	120		0.02	4	μΑ
	_	0,20	20	20	20	600 .	600	स्त्र १५४	0.04	- 20	
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1 .		
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6		ur.
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3 4	6.8	-]
Output High	4.6	.0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1		mA
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1.15	-1.6	₋ -3.2	_	1
Current,	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	_	1
IOH Min.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	. –	<u> </u>
Output Voltage: -		0,5	5	0.05			-	0	0.05		
Low-Level,	_	0,10	10	0.05			-	0	0.05		
VOL Max.	_	0,15	15	0.05				0	0.05	V	
Output Voltage:	-	0,5	5		4	.95		4.95	5	_	. *
High-Level,	· -	0,10	10	9.95			9.95	10	–		
VOH Min.		0,15	15	14:95			14.95	15	-	1 :	
Input Current IIN Max.		0,18	18	±0.1	±0.1	±1	±1	_	±10-5	±0.1	μΑ
3-State Output Leakage Current IOUT Max.		0,18	18	±0.4	±0.4	±12	±12	- 1, - 1	±10 ⁻⁴	±0.4	μΑ
	vo(>)	V _{CC} (V)	V _{DD} (V)					Prijest			
Input Low	1.9	5	10		1	1.5				1.5	
Voltage, VIL Max.	1.5, 13.5	10	15	3				=	3		
Input High	1,9	5	10	3.5				3.5		-	\ \
Voltage, VIH Min.	1.5,13.5	10	15			7		7	11 <u>11</u>		

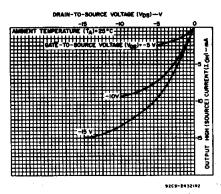


Fig.5 - Minimum output high (source)current characteristics.

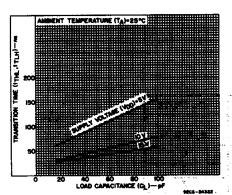


Fig.6 - Typical transition time as a function of load capacitance.

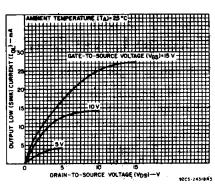


Fig.2 - Typical output low (sink) current characteristics.

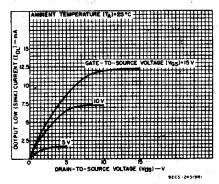


Fig.3 – Minimum output low (sink) current characteristics.

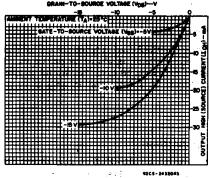


Fig.4 - Typical output high (source).

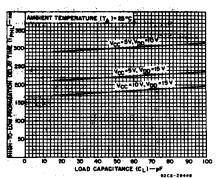


Fig.7 - Typical high-to-low propagation delay time as a function of load capacitance.

CD40109B Types

DYNAMIC ELECTRICAL CHARACTERISTICS at T $_A$ = 25°C, Input t $_r$, t $_f$ = 20 ns, C $_L$ = 50 pF, R $_L$ = 200 k Ω unless otherwise specified

	SHIFTING	Vcc	V _{DD}	LIN	UNITS	
CHARACTERISTIC	MODE	(V)	(V)	Typ. Max.		
Propagation Delay - Data Input	-	5	10	300	600	
to Output:	L-H	5	15	220	440	ns
High-to-Low Level, tpHL		10	15	180	360	
	H-L	10	5	250	500	
		15	5	250	500	
		15	10	120	240	
	L–H	5	10	130	260	
		5	15	120	240	
Low-to-High Level, tpLH		10	15	70	140	
Edw-to-riight cever, tPLH		10	5	230	460	ns
	H-L	15	5	230	460	
		15	10	80	160	
3-State Disable Delay:		5	10	60	120	
R _L = 1 kΩ	L-H	5	15	75	150	
Output High to High		10	15	35	70	ns
Impedance, tpHZ		10	5	200	400	115
	H-L	15	5	200	400	
		15	10	40	80	
·	. L-H	5	10	370	740	ns
Output Low to High		5	15	300	600	
Impedance, tp_Z		10	15	250	500	
#		10	5	250	500	
:	H-L	15	5	250	500	
		15	10	130	260	
,		5	10	320	640	
High Impedance to	L–H	5	15	230	460	ns
Output High, tpZH	· · · · · · · · · · · · · · · · · · ·	10	15	180	360	
	H-L	10	5	300	600	
		15 15	5 10	300 130	600 260	
		5	10			
	L-H	5 5	15	100 80	200 160	ns
High Impedance to	L-n	10	15	40	80	
Output Low, tpZL		10	5	200	400	
	H-L	15	5	200	400	
	"-"	15	10	40	80	
7 Turkeya (199 -1994)	要学生	* 25	¥ 10	50	100	-
Transition Time, TTHL, TTLH	L-H	1 5	15	40	80	
		10.	15	40	80	
	1.4	10 🐗	5	100	200	ns
	H-L	15	- 5	100	200	
		15	10	50	100	
Input Capacitance, C		Any	Input	5	7.5	ρF
	Tr.	14		L		

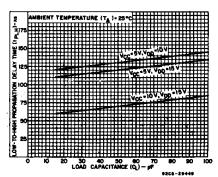


Fig.8 — Typical low-to-high propagation delay time as a function of load capacitance.

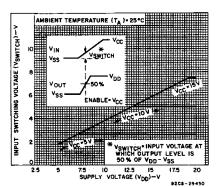


Fig.9 — Typical input switching as a function of high-level supply voltage.

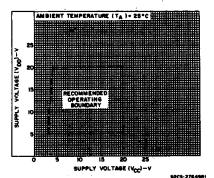


Fig. 10 — High-level supply voltage vs. low-level supply voltage.

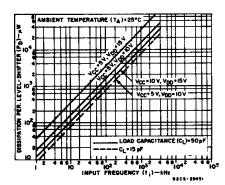


Fig.11 — Typical dynamic power dissipation as a function of input frequency.

CD40109B Types

TEST CIRCUITS

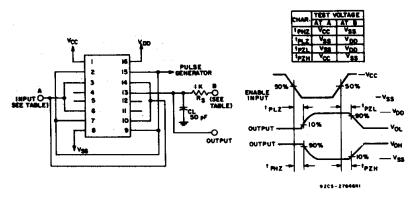


Fig. 12 - Output enable delay times test circuit and waveforms.

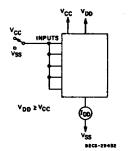


Fig. 13 - Quiescent device current.

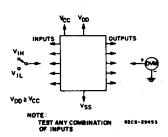


Fig. 14 - Input voltage.

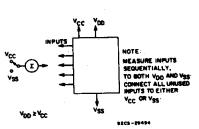


Fig. 15 - input current.

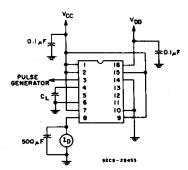
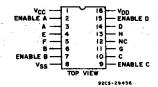
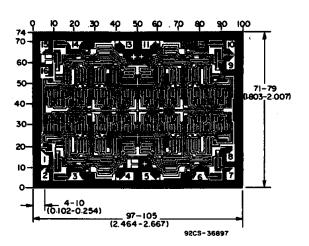




Fig. 16 - Dynamic power dissipation test circuit.

CD40109B TERMINAL ASSIGNMENT

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

Dimensions and pad layout for CD401098H.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated