

2N4401

MMBT4401

NPN General Pupose Amplifier

This device is designed for use as a medium power amplifier and switch requiring collector currents up to 500 mA.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6.0	V
I _C	Collector Current - Continuous	600	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	М	Units	
		2N4401	*MMBT4401	
P_{D}	Total Device Dissipation	625	350	mW
	Derate above 25°C	5.0	2.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

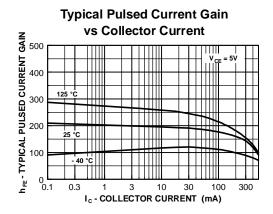
These ratings are based on a maximum junction temperature of 150 degrees C.
 These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

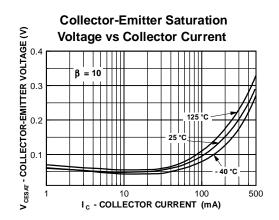
NPN General Purpose Amplifier (continued)

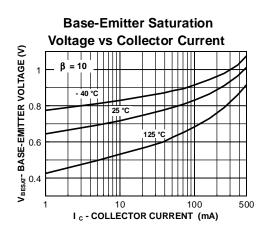
30

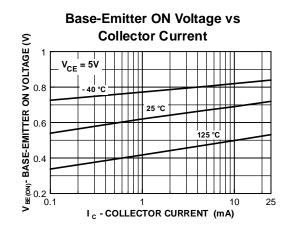
ns

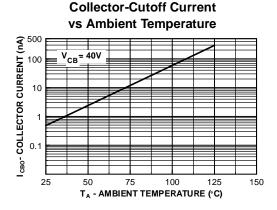
Symbol	Parameter	Test Conditions	Min	Max	Units
055.0114	DA OTEDIOTION				
	RACTERISTICS		1	1	
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage*	$I_C = 1.0 \text{ mA}, I_B = 0$	40		V
$V_{(BR)CBO}$	Collector-Base Breakdown Voltage	$I_C = 0.1 \text{ mA}, I_E = 0$	60		V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_E = 0.1 \text{ mA}, I_C = 0$	6.0		V
I _{BL}	Base Cutoff Current	$V_{CE} = 35 \text{ V}, V_{EB} = 0.4 \text{ V}$		0.1	μА
I _{CEX}	Collector Cutoff Current	$V_{CE} = 35 \text{ V}, V_{EB} = 0.4 \text{ V}$		0.1	μА
ON CHAF	RACTERISTICS*				
h _{FE}	DC Current Gain	$I_C = 0.1 \text{ mA}, V_{CE} = 1.0 \text{ V}$	20		
' 'FE	Do Guiterit Gairi	$I_C = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$	40		
		$I_C = 10 \text{ mA}, V_{CE} = 1.0 \text{ V}$	80		
		$I_C = 150 \text{ mA}, V_{CE} = 1.0 \text{ V}$	100	300	
		$I_C = 500 \text{ mA}, V_{CE} = 2.0 \text{ V}$	40		
$V_{CE(sat)}$	Collector-Emitter Saturation Voltage	$I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$		0.4	V
\ /	Door Emitter Caturation Valtage	$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$ $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$	0.75	0.75 0.95	V
$V_{BE(sat)}$	Base-Emitter Saturation Voltage	, 5	0.75		V
		$I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$		1.2	V
	IGNAL CHARACTERISTICS Current Gain - Bandwidth Product	$I_{C} = 20 \text{ mA}, V_{CE} = 10 \text{ V},$	250	1.2	MHz
f _T	Current Gain - Bandwidth Product	$I_C = 20 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz	250		MHz
f_{T}		$I_{C} = 20 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz $V_{CB} = 5.0 \text{ V}, I_{E} = 0,$	250	6.5	
	Current Gain - Bandwidth Product	$\begin{split} I_{C} &= 20 \text{ mA, } V_{CE} = 10 \text{ V,} \\ f &= 100 \text{ MHz} \\ V_{CB} &= 5.0 \text{ V, } I_{E} = 0, \\ f &= 140 \text{ kHz} \\ V_{BE} &= 0.5 \text{ V, } I_{C} = 0, \end{split}$	250		MHz
f _T C _{cb} C _{eb}	Current Gain - Bandwidth Product Collector-Base Capacitance	$\begin{split} I_{C} &= 20 \text{ mA, } V_{CE} = 10 \text{ V,} \\ f &= 100 \text{ MHz} \\ V_{CB} &= 5.0 \text{ V, } I_{E} = 0, \\ f &= 140 \text{ kHz} \\ V_{BE} &= 0.5 \text{ V, } I_{C} = 0, \\ f &= 140 \text{ kHz} \\ I_{C} &= 1.0 \text{ mA, } V_{CE} = 10 \text{ V,} \end{split}$	250	6.5	MHz pF
f _T C _{cb} C _{eb}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 100 \text{ MHz} \\ V_{CB} &= 5.0 \text{ V}, \ I_E = 0, \\ f &= 140 \text{ kHz} \\ V_{BE} &= 0.5 \text{ V}, \ I_C = 0, \\ f &= 140 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_C &= 1.0 \text{ mA}, \ V_{CE} = 10 \text{ V}, \end{split}$		6.5	MHz pF pF kΩ
f _T C _{cb} C _{eb} h _{ie}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance	$\begin{split} I_C &= 20 \text{ mA, } V_{CE} = 10 \text{ V,} \\ f &= 100 \text{ MHz} \\ V_{CB} &= 5.0 \text{ V, } I_E = 0, \\ f &= 140 \text{ kHz} \\ V_{BE} &= 0.5 \text{ V, } I_C = 0, \\ f &= 140 \text{ kHz} \\ I_C &= 1.0 \text{ mA, } V_{CE} = 10 \text{ V,} \\ f &= 1.0 \text{ kHz} \end{split}$	1.0	6.5 30 15	MHz pF pF kΩ
f _T C _{cb} C _{eb} h _{ie} h _{re}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ V, \\ f &= 100 \ MHz \\ V_{CB} &= 5.0 \ V, \ I_E = 0, \\ f &= 140 \ kHz \\ V_{BE} &= 0.5 \ V, \ I_C = 0, \\ f &= 140 \ kHz \\ I_C &= 1.0 \ mA, \ V_{CE} = 10 \ V, \\ f &= 1.0 \ kHz \\ I_C &= 1.0 \ mA, \ V_{CE} = 10 \ V, \\ f &= 1.0 \ kHz \\ I_C &= 1.0 \ mA, \ V_{CE} = 10 \ V, \end{split}$	1.0	6.5 30 15 8.0	MHz pF pF
f _T C _{cb} C _{eb} h _{ie} h _{re} h _{fe}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain Output Admittance	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ V, \\ f &= 100 \ \text{MHz} \\ V_{CB} &= 5.0 \ \text{V}, \ I_E = 0, \\ f &= 140 \ \text{kHz} \\ V_{BE} &= 0.5 \ \text{V}, \ I_C = 0, \\ f &= 140 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ $	1.0 0.1 40	6.5 30 15 8.0 500	MHz pF pF kΩ x 10 ⁻⁴
f _T C _{cb} C _{eb} h _{ie} h _{re} h _{fe} SWITCHI	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ V, \\ f &= 100 \ \text{MHz} \\ V_{CB} &= 5.0 \ \text{V}, \ I_E = 0, \\ f &= 140 \ \text{kHz} \\ V_{BE} &= 0.5 \ \text{V}, \ I_C = 0, \\ f &= 140 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ f &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ \text{MA}, \ V_{CE} = 10 \ \text{V}, \\ I_C &= 1.0 \ $	1.0 0.1 40	6.5 30 15 8.0 500	MHz pF pF kΩ x 10 ⁻⁴
f _T Ccb Ceb h _{ie} h _{re} h _{fe}	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain Output Admittance	$\begin{split} I_C &= 20 \text{ mA}, \ V_{CE} = 10 \ V, \\ f &= 100 \ \text{MHz} \\ V_{CB} &= 5.0 \ V, \ I_E = 0, \\ f &= 140 \ \text{kHz} \\ V_{BE} &= 0.5 \ V, \ I_C = 0, \\ f &= 140 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ V, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ V, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ V, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ V, \\ f &= 1.0 \ \text{kHz} \\ I_C &= 1.0 \ \text{mA}, \ V_{CE} = 10 \ V, \\ f &= 1.0 \ \text{kHz} \\ \end{split}$	1.0 0.1 40	6.5 30 15 8.0 500 30	MHz pF pF kΩ x 10 ⁻²

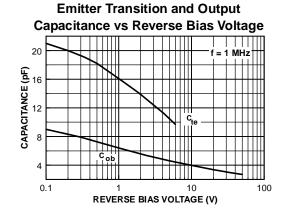

 $I_{B1} = I_{B2} = 15 \text{ mA}$

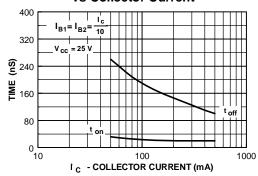

Fall Time

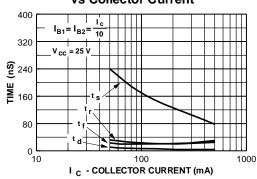

 $^{^\}bigstar \text{Pulse Test: Pulse Width} \leq 300~\mu\text{s}, \, \text{Duty Cycle} \leq 2.0\%$


(continued)


Typical Characteristics



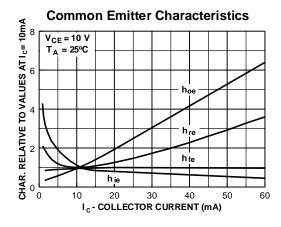


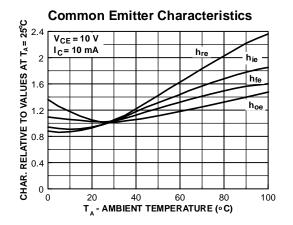

(continued)

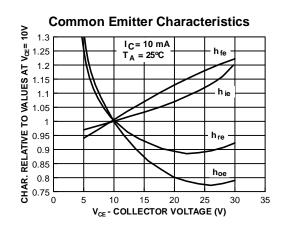
Typical Characteristics (continued)


Turn On and Turn Off Times vs Collector Current

Switching Times vs Collector Current




Power Dissipation vs Ambient Temperature



(continued)

Typical Common Emitter Characteristics (f = 1.0kHz)

(continued)

Test Circuits

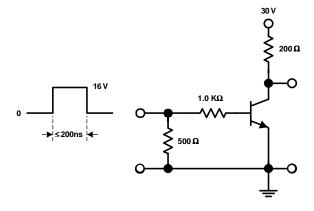
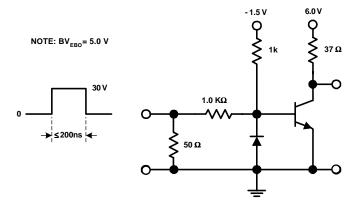
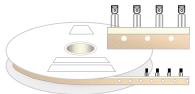


FIGURE 1: Saturated Turn-On Switching Timer



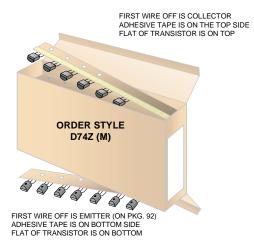

FIGURE 2: Saturated Turn-Off Switching Time

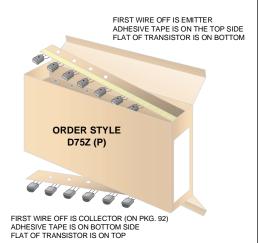
TO-92 Tape and Reel Data FAIRCHILD SEMICONDUCTOR TM **TO-92 Packaging** Configuration: Figure 1.0 **TAPE and REEL OPTION** FSCINT Label sample See Fig 2.0 for various Reeling Styles CBVK//418019 **FSCINT** Label 5 Reels per Intermediate Box Customized F63TNR Label sample Label F63TNR LOT: CBVK741B019 QTY: 2000 FSID: PN222N Customized QTY1: QTY2: Label 375mm x 267mm x 375mm Intermediate Box TO-92 TNR/AMMO PACKING INFROMATION **AMMO PACK OPTION** See Fig 3.0 for 2 Ammo Packing Style Quantity EOL code **Pack Options** 2,000 D26Z Е 2,000 D27Z Ammo М 2,000 D74Z D75Z 2,000 **FSCINT** Unit weight = 0.22 gm Reel weight with components = 1.04 kg Ammo weight with components = 1.02 kg Max quantity per intermediate box = 10,000 units Label 5 Ammo boxes per Intermediate Box 327mm x 158mm x 135mm Immediate Box Customized F63TNR Customized Label Label 333mm x 231mm x 183mm Intermediate Box (TO-92) BULK PACKING INFORMATION **BULK OPTION** See Bulk Packing DESCRIPTION QUANTITY Information table J18Z TO-18 OPTION STD 2.0 K / BOX Anti-static Bubble Sheets TO-5 OPTION STD NO LEAD CLIP 1.5 K / BOX J05Z **FSCINT Label** NO EOL TO-92 STANDARD STRAIGHT FOR: PKG 92, NO LEADCLIP 2.0 K / BOX 94 (NON PROELECTRON SERIES), 96 TO-92 STANDARD STRAIGHT FOR: PKG 94 (PROELECTRON SERIES BCXXX, BFXXX, BSRXXX), 97, 98 L34Z NO LEADCLIP 2.0 K / BOX 2000 units per 114mm x 102mm x 51mm EO70 box for std option Immediate Box 5 EO70 boxes per intermediate Box 530mm x 130mm x 83mm Customized Intermediate box Label FSCINT Label 10,000 units maximum per intermediate box for std option

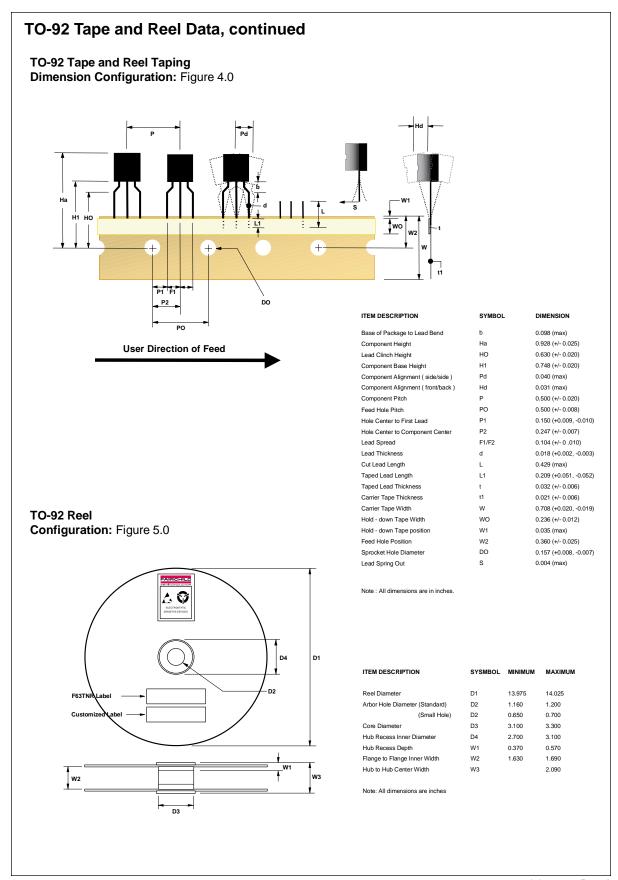
TO-92 Tape and Reel Data, continued

TO-92 Reeling Style Configuration: Figure 2.0

Machine Option "A" (H)

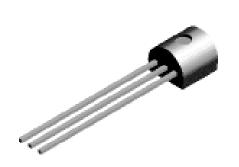


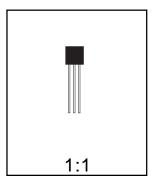

Style "A", D26Z, D70Z (s/h)


Machine Option "E" (J)

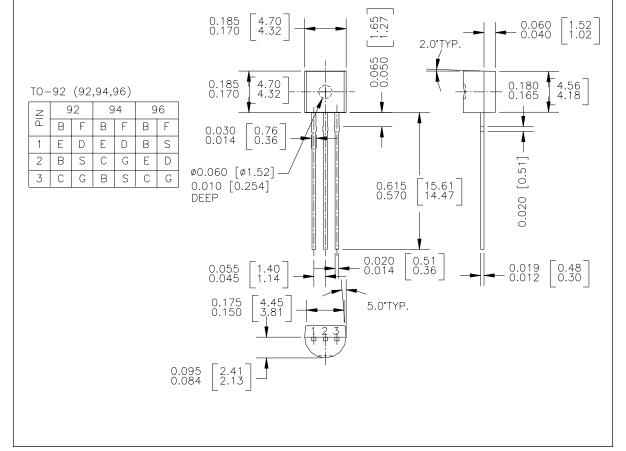
Style "E", D27Z, D71Z (s/h)

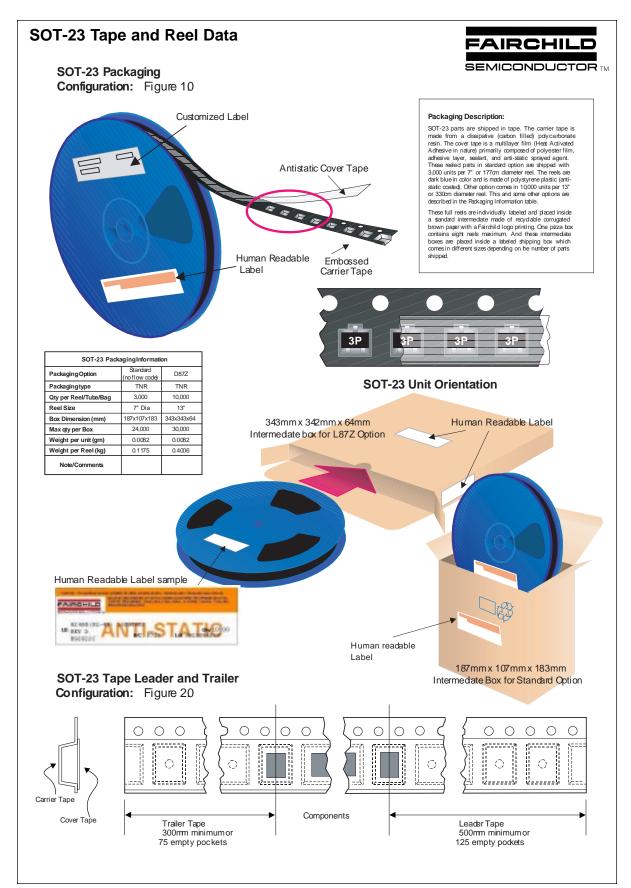
TO-92 Radial Ammo Packaging Configuration: Figure 3.0





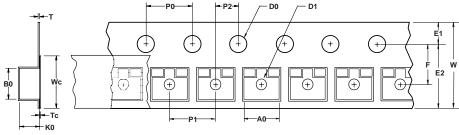
TO-92 Package Dimensions


TO-92 (FS PKG Code 92, 94, 96)



Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]

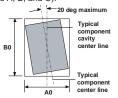
Part Weight per unit (gram): 0.1977



SOT-23 Tape and Reel Data, continued

SOT-23 Embossed Carrier Tape

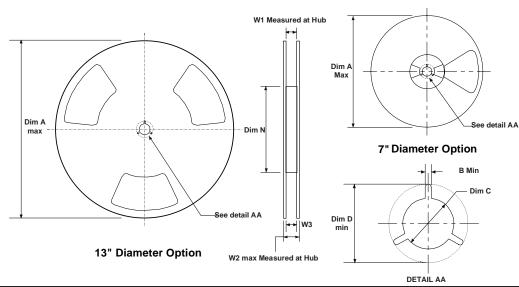
Configuration: Figure 3.0


User Direction of Feed

	Dimensions are in millimeter													
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	Т	Wc	Тс
SOT-23 (8mm)	3.15 +/-0.10	2.77 +/-0.10	8.0 +/-0.3	1.55 +/-0.05	1.125 +/-0.125	1.75 +/-0.10	6.25 min	3.50 +/-0.05	4.0 +/-0.1	4.0 +/-0.1	1.30 +/-0.10	0.228 +/-0.013	5.2 +/-0.3	0.06 +/-0.02

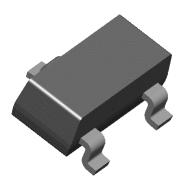
Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

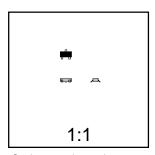
Sketch A (Side or Front Sectional View)
Component Rotation



Sketch B (Top View)
Component Rotation

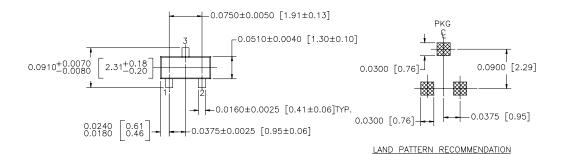
Sketch C (Top View)
Component lateral movement

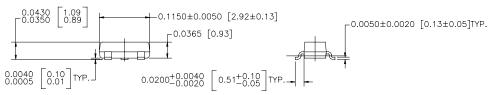

SOT-23 Reel Configuration: Figure 4.0



Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
8mm	7" Dia	7.00 177.8	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	2.165 55	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9
8mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	4.00 100	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9

SOT-23 (FS PKG Code 49)





Scale 1:1 on letter size paper

Dimensions shown below are in: inches [millimeters]

Part Weight per unit (gram): 0.0082

CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS SOT 23, 3 LEADS LOW PROFILE

NOTE : UNLESS OTHERWISE SPECIFIED

- STANDARD LEAD FINISH 150 MICROINCHES / 3.81 MICROMETERS MINIMUM TIN / LEAD (SOLDER) ON ALLOY 42
- 2. REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE G, DATED JUL 1993

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ Bottomless™ QFET™ TinyLogic™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition				
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.				
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.				
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.				